
Volume 2, No. 3

NatioNal CyberseCurity
iNstitute JourNal

© Excelsior College, 2015

ISSN 2375-592X

National Cybersecurity Institute | 2000 M Street, Suite 500 | Washington, D.C. 20036
Excelsior College | 7 Columbia Circle | Albany, NY 12203-5159

NATIONAL CYBERSECURITY INSTITUTE JOURNAL
Volume 2, No. 3

FOUNDING EDITOR IN CHIEF

Jane LeClair, EdD,
National Cybersecurity Institute at Excelsior College

ASSOCIATE EDITORS

Nadine H. Alami, Doctoral Candidate,
National Cybersecurity Institute at Excelsior College

Michael Tu, PhD, Purdue University

5. Project-based Curricular Service Learning for Cybersecurity Education
Ping Wang

13. A Probabilistic Framework for Quantifying Mixed
Uncertainties in Cyber Attacker Payoffs
Samrat Chatterjee
Ramakrishna Tipireddy
Matthew Oster
Mahantesh Halappanavar

25. Creating New Private-Public Partnerships in Cybersecurity
Chris Golden

31. Evolution of Information Security Issues in Small Businesses
Debasis Bhattacharya
Debra A. Nakama

45. Hybrid Implementation of Flipped Classroom Approach
to Cybersecurity Education
Aparicio Carranza
Casimer DeCusatis

55. Malware Fingerprinting: Analysis of Tool Marks and
Other Characteristics of Windows Malware
Sean McVey

65. Strengthening Cyber Incident Response Capabilities Through
Education and Training in the Incident Command System
Austen D. Givens

 1NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

EDITORIAL BOARD

FOUNDING EDITOR IN CHIEF
Jane LeClair, EdD,
National Cybersecurity Institute at Excelsior College

ASSOCIATE EDITORS
Nadine H. Alami, Doctoral Candidate,
National Cybersecurity Institute at Excelsior College

Michael Tu, PhD, Purdue University

PEER REVIEWERS

The National Cybersecurity Institute Journal gratefully acknowledges the reviewers who have provided valuable service
to the work of the journal:

PEER REVIEWERS
Mohammed A. Abdallah, PhD,
 Excelsior College/State University of NY
James Antonakos, MS,
 Broome Community College/Excelsior College
Barbara Ciaramitaro, PhD
 Excelsior College/Walsh College
Kenneth Desforges, MSc, Excelsior College
Amelia Estwick, PhD, Excelsior College

Ron Marzitelli, MS, Excelsior College
Kris Monroe, AOS, Ithaca College
Kevin Newmeyer, PhD, National Cybersecurity Institute Fellow
Charles Parker, Doctoral Candidate, Ciena Healthcare
Denise Pheils, PhD, Excelsior College
Lifang Shih, PhD, Excelsior College
Michael A. Silas, PhD, Excelsior College/Courage Services
Michael Tu, PhD, Purdue University

NATIONAL CYBERSECURITY INSTITUTE JOURNAL

The National Cybersecurity Institute at Excelsior College
is a research center based in Washington, DC, dedicated
to increasing knowledge of the cybersecurity discipline
and its workforce demands. Published three times a
year, the peer-reviewed National Cybersecurity Institute
Journal covers topics that appeal to a broad readership
within the cybersecurity discipline, with a particular focus

on education, training, and workforce development. The
manuscripts submitted to the journal are reviewed for their
contribution to the advancement of applied research in the
area of cybersecurity.

Submission guidelines for authors can be found at
www.nationalcybersecurityinstitute.org/journal/.

 2 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

www.nationalcybersecurityinstitute.org/journal/

FROM THE EDITOR

Welcome to the third issue in Volume 2 of the National Cybersecurity Institute Journal.

These are exciting times in the cybersecurity community with news of ongoing cyber breaches,
new legislation, and numerous meetings that seek to dissuade hackers from attacking our digital
systems. Here at NCI, through our journal, we continue to increase awareness and knowledge of
the cybersecurity discipline to help everyone better understand and meet the escalating challenges
in the cyber community. In this latest issue, you will find seven informative articles from notable
authors with a variety of perspectives on the field.

In our first article, Ping Wang presents us with “Project-based Curricular Service Learning for
Cybersecurity Education,” a paper that proposes a project-based curricular service learning
model to enhance education and career preparation in cybersecurity. Next, the team of Samrat
Chatterjee, Ramakrishna Tipireddy, Matthew Oster, and Mahantesh Halappanavar provides
us with their paper, “A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber
Attacker Payoffs,” which highlights the importance of quantifying several sources and types of
uncertainty impacting cyber attacker payoffs (defined as a penalty or reward based on actions)
within a problem space. In his offering, Chris Golden suggests that “Creating New Private-Public
Partnerships in Cybersecurity” can help create an environment that fosters cooperation between
the private and public arenas and might create a larger incentive for businesses to join a cyber-
security partnership. Next, Debasis Bhattacharya and Debra A. Nakama discuss in detail the
cybersecurity issues that relate to small businesses in their article, “Evolution of Information
Security Issues in Small Businesses.” Aparicio Carranza and Casimer DeCusatis provide us with
an interesting look at the flipped classroom in their offering, “Hybrid Implementation of Flipped
Classroom Approach to Cybersecurity Education.” Malware is an ongoing issue, and Sean McVey
presents an interesting look at it with “Malware Fingerprinting: Analysis of Tool Marks and Other
Characteristics of Windows Malware.” Finally, we all recognize the importance of appropriate
incidence response to a cyber attack and Austen Givens provides the reader with an in-depth look
at it with “Strengthening Cyber Incident Response Capabilities Through Education and Training
in the Incident Command System.”

The editors at NCI Journal believe these articles will continue to educate our readers and pro-
vide them with useful information that can be applied to their own systems and organizations to
strengthen their systems cybersecurity.

The security of your digital system is of prime importance to you and your stakeholders, and we
work continually to publish articles that you, our readers, will find helpful in your organization.
Many thanks go to all the contributors, administration, and staff for their ongoing efforts to bring
this latest edition of the National Cybersecurity Institute Journal to fruition. I look forward to your
comments, suggestions, and future submissions to the journal.

Jane A. LeClair, EdD

Editor in Chief

 3NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Project-based Curricular Service Learning for Cybersecurity Education

 4 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Project-based Curricular Service Learning for
Cybersecurity Education

Ping Wang

ABSTRACT

Cybersecurity is a fast-growing career field with
increasing challenges for educators. Service
learning can be an effective educational method
to improve career knowledge, skills, and profes-
sionalism. This paper proposes a project-based
curricular service learning model to enhance edu-
cation and career preparation in cybersecurity.
The model proposes that student experience, dis-
covery, and learning from course-related service
projects are key elements to improving readiness
for the cybersecurity profession. The proposition
is supported by data and findings from a longitu-
dinal study using a service learning project and
team collaboration.

INTRODUCTION

Cybersecurity, traditionally known as information
security, is a fast-growing career field due to soaring
and costly cyber crimes. College programs in cyber-
security typically prepare graduates for entry-level
positions, such as cybersecurity analysts. According
to the United States Department of Labor Bureau of
Labor Statistics (BLS), employment of information
security analysts is projected to grow 37% from 2012
to 2022, much faster than the average growth rates of
11% for all occupations and 18% for all computer-
related occupations (United States Department of
Labor, 2014). There is a national shortage of cyber-
security professionals with the right knowledge and
skills, and education is expected to be the key solution

(RAND National Security Research Division, 2014).
Therefore, there are increasing demands and opportu-
nities for cybersecurity education and training.

Meanwhile, serious challenges exist for cybersecu-
rity education. Cybersecurity is a new area based on
the traditional computing profession and requires
students to have a strong background and preparation
in computer and information science and technology
to succeed academically and professionally. However,
there has been a perpetuated failure of education in
the United States to prepare a strong and world-lead-
ing workforce in computing professions (Patterson,
2005). Major characteristics of this failure in U.S.
undergraduate computing programs include outdated
curricula, declining enrollment, and ignoring service
learning opportunities that build application skills
(Morelli, de Lanerolle, & Tucker, 2012). The outdated
curricula and course content and lack of knowledge
application experience may be the leading cause for
the gap between the students’ learning and the actual
skills needed in the employment market. A recent
graduate in computer software engineering from a
major public university gives a vivid description of
such a gap after his failure to find a job despite the
fact that he graduated at the top of his engineering
class: My college education left me totally unprepared
to enter the real workforce. My degree was supposed
to make me qualified as a programmer, but by the time
I left school, all of the software and programming lan-
guages I’d learned had been obsolete for years (Ark,
2014, para. 3).

To address the cybersecurity needs and coordinate the
national effort on improving cybersecurity educa-
tion, training, and professional development, the
U.S. National Initiative for Cybersecurity Education
(NICE) was established. The mission of NICE is
“to enhance the overall cybersecurity posture of the
United States by accelerating the availability of educa-
tional and training resources designed to improve the

Project-based Curricular Service Learning for Cybersecurity Education

 5NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

cyber behavior, skill, and knowledge of every segment
of the population—enabling a safer cyberspace for
all” (National Initiative for Cybersecurity Careers and
Studies, US Department of Homeland Security, n.d.,
para. 2). This mission underscores the importance of
both knowledge acquisition and knowledge sharing
in the communities of our society for the benefit of
everyone’s security in the cyberspace.

To help bridge the gap between college education
offering and the job skills needed in the real world,
this paper proposes a project-based curricular service
learning model for cybersecurity education. The
service learning model provides constructive and valu-
able opportunities for students to actively apply their
learning to real world situations, gain authentic hands-
on experience, improve their skills in collaboration,
reflection and critical thinking, and cultivate strong
professional and community service ethics that are
critical to a successful career. This paper also reports
and discusses the empirical data and findings in sup-
port of the model.

CONSTRUCTIVE SERVICE LEARNING:
THEORIES AND MODELS

Solid career preparation requires constructive student-
centered learning and growth through education.
Service learning is both a practical service and a con-
structive learning process that involves active knowl-
edge inquiry, discovery, and acquisition and sharing.
Bruner (1961) defines discovery learning as all forms
of knowledge acquisition by using one’s own mind
such as those used in curricula projects. Curricula
service learning is guided by and complements class
instruction. A curricula service learning project is an
enhanced discovery leaning process assisted by the
instructions, guidelines, examples, and feedback from
the course instructor rather than a totally indepen-
dent self-inquiry by a student. Research indicates that
enhanced discovery learning is much more effective
than unassisted discovery or independent inquiry
(Alfieri, Brooks, & Alderich, 2011). This type of
discovery learning is often referred to as constructiv-
ism, which emphasizes the active role of the learner in
knowledge acquisition and application.

Comprehensive analysis of 11 service learning
research studies involving over 2,000 undergradu-
ate students suggests that service learning has had
statistically significant and positive effects on student
learning outcomes (Warren, 2012). In cybersecurity
workforce preparation, human capital and cybersecu-
rity knowledge are the essential factors for achieving
technical competence in the general cybersecurity
competency model (United States Government
Accountability Office, 2011). Knowledge is the
contextual and high-value form of information and
experience ready to apply to decisions and actions
(Davenport, De Long, & Beers, 1998). Knowledge
consists of both explicit knowledge or communicable
information and tacit knowledge, which is personal
and intuitive insight and know-how originated from
individual experiences and values (Desouza, 2003).
Service learning provides such individual experiences
for acquiring and sharing explicit and tacit knowledge.
In addition, the theory of reasoned action states that
individual perception and attitude are a determin-
ing factor of one’s behavioral intention that predicts
one’s actual behavior (Fishbein & Ajzen, 1975). Prior
research results indicate a significant positive correla-
tion between individuals’ cybersecurity knowledge
and their intention and attitude toward cybersecurity
technology (Wang, 2010, 2013). This paper proposes
that service learning experience positively contributes
to students’ motivation and success in learning. In
other words, students’ service learning experience and
knowledge acquisition in cybersecurity improve their
perceptions and attitude toward cybersecurity technol-
ogy, which in turn improves their motivation for learn-
ing behavior and success in cybersecurity education.

Service learning brings many positive pedagogical
effects that enhance learning, and the most significant
gains are in application experience, critical thinking
through reflection, professionalism and community
service ethics, and attitude and motivation for
learning. Through hands-on learning-by-doing service
learning activities, such as community service projects,
internships, practica, and research projects, students
make significant gains in their knowledge and skills
(such as security awareness) and in their ability to
contribute to the welfare of their communities (Aldas,
Crispo, Johnson, & Price, 2010; Lincke, 2011). Service
learning is a process that involves frequent reflection
on knowledge and experience that enhances critical

Project-based Curricular Service Learning for Cybersecurity Education Project-based Curricular Service Learning for Cybersecurity Education

 6 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

thinking and learning. Reflection is a critical thinking
activity that demonstrates one’s abilities and skills in
connecting experience, observation, theories, reason-
ing, and learning objectives. In service learning,
reflection activities, such as written or oral reports and
presentations, encourage and enable students to
explore, discover, and evaluate relationships between
the course content learned from readings, lectures, and
discussions, and their real experiences from doing the
service learning work for the community (Ahmed,
Hutter, & Plaut, 2008).

Service learning also contributes to the development
of students’ professional and community service ethics.
Through service learning experience, students learn to
serve the community with pride and ethical behavior,
increase their recognition of civic responsibilities and
social justice, and develop a life-long habit of com-
munity service and civic involvement (Aldas, Crispo,
Johnson, & Price, 2010; Meaney, Griffin, & Bohler,
2009; Steinberg, Bringle, & Williams, 2010). Students’
successful service learning project experience could
lead to a higher perceived usefulness of the course con-
tent and materials and better attitude and intention to
accept and use the course materials (Evangelopoulos,
Sidorova, & Riolli, 2003). Prior research also indicates
that service learning that integrates academic content
and community service improves students’ academic
interest and their attitude and motivation for learn-
ing, which leads to improved student engagement
and retention (Morelli, de Lanerolle, & Tucker, 2012;
Simonet, 2008).

Service learning also contributes to the development
of students’ professional and community service ethics.
Through service learning experience, students learn to
serve the community with pride and ethical behavior,
increase their recognition of civic responsibilities and
social justice, and develop a life-long habit of com-
munity service and civic involvement (Aldas, Crispo,
Johnson, & Price, 2010; Meaney, Griffin, & Bohler,
2009; Steinberg, Bringle, & Williams, 2010). Students’
successful service learning project experience could
lead to a higher perceived usefulness of the course con-
tent and materials and better attitude and intention to
accept and use the course materials (Evangelopoulos,
Sidorova, & Riolli, 2003). Prior research also indicates
that service learning that integrates academic content
and community service improves students’ academic
interest and their attitude and motivation for learn-
ing, which leads to improved student engagement
and retention (Morelli, de Lanerolle, & Tucker, 2012;
Simonet, 2008).

Service learning may occur in various forms based
on different models. Heffernan (2001) identifies and
describes six models for service learning. Table 1 below
summarizes the six models, the student role, and the
stated benefit for each model. These models primar-
ily reflect the types of service learning activities and
emphasize the perspective of the curricular design
while ignoring the specific knowledge and skill objec-
tives for student learning. The models are generic and
not specifically designed for a certain discipline.

TABLE 1: HEFFERNAN’S SERVICE LEARNING (SL) MODELS

MODEL STUDENT ROLE BENEFIT

DISCIPLINE-BASED SL MODEL
Regular presence in the community and
reflection on course content

Improve understanding of theoretical
concepts

PROBLEM-BASED SL MODEL
Serve as “consultants” on specific
community problem or need

Alleviate logistic difficulties for regular
weekly commitments

CAPSTONE COURSE MODEL
Apply previous course work to relevant
service work in the community

Help students transition from theory
to practice

SERVICE INTERNSHIP MODEL
Work 10 – 20 hours a week in the community
with faculty guidance

Develop skills while seeing contribution
to the community

COMMUNITY-BASED ACTION
RESEARCH MODEL

Work with faculty to learn research methods
while serving as advocate for the community

Most effective for small classes and
groups of students

DIRECTED STUDY
ADDITIONAL/
EXTRA CREDIT MODEL

Work with an instructor to complete
additional work or more in-depth work on a
subject for additional credit

Good choice for self-directed and
motivated students

Project-based Curricular Service Learning for Cybersecurity Education Project-based Curricular Service Learning for Cybersecurity Education

 7NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Nejmeh (2012) offers a more fine-grained three-
dimensional model, which includes project types,
activity range, and project mode for service learning.
Compared with Heffernan’s models, Nejmeh’s three-
dimensional model provides more specific categories
of service learning activities with expected focus and
skills. It is also practically more relevant to service
learning in computing and cybersecurity education as
the descriptions and examples are specifically based
on computer and information science disciplines and
sub-disciplines. Table 2 summarizes the three dimen-
sions of this model.

METHODOLOGY

The study in this paper is based on a planned longitu-
dinal study using a community-based service learning
project assignment required for an undergraduate
credit course in cybersecurity conducted at a large
urban public non-profit college in northeast U.S. with
both online and on-site deliveries. The study period
is three and a half years from the Fall 2011 semester
to the Fall 2014 semester. The service learning project
assignment is weighted as 10% in the student overall

course grade. During the last three semesters of the
research (in spring, summer, and fall of 2014), the
team work option is added to the project to evalu-
ate student collaboration in service learning. The
project design for the study includes the following
topics related to the course content: training/tutor-
ing (sharing cybersecurity knowledge and/or skills),
professional services (providing expert advice on a
cybersecurity issue related to the course content),
system selection (identifying cybersecurity needs and
recommending solutions), and support/help desk
(providing technical support and troubleshooting on
cybersecurity topics). The expected activities involved
in the service learning project include research, analy-
sis, testing, transition (installation), and assessment of
cybersecurity issues and solutions. The project deliver-
able is a written report from the student summarizing
the project experience, activities performed, person(s)
worked with, accomplishments, and reflections on les-
sons learned and areas for improvement.

The project mode is curricular because it is primarily
based on the cybersecurity knowledge, concepts, and
skills in the course content. The project is an enhanced
or assisted discovery learning process as necessary
guidance and feedback are given in class. Though in

PROJECT TYPE ACTIVITY RANGE PROJECT MODE

TRAINING
(share knowledge or skills)

PROFESSIONAL SERVICES
(provide expert advice)

SYSTEM SELECTION
(identify system needs and
recommend solutions)

SUPPORT/HELP DESK
(provide customer support)

CUSTOM DEVELOPMENT
(develop custom applications)

PRODUCT DEVELOPMENT
(develop common product
applications)

Research (problem identification and
concept definition)

Analysis (requirements discovery, docu-
mentation, process/system validation)

Design (architecture and design of data-
base, user interface, communications,
workflow, report, and solution strategy)

Implementation (system implementation
with details)

Test (system integration, testing user
acceptance, and validation of solution
effectiveness)

Transition (system installation and migra-
tion and delivery of tested system)

Assessment (assessing system or service
performance, efficiency, effectiveness, and
value/impact)

Cocurricular (community service completed
outside classroom; either university-based
or non-university-based)

Curricular (project completed in the context
of a college course – common project
course, subdiscipline-specific project
course, or an interdisciplinary course)

Hybrid (cooperative style of completing
a project involving both a cocurricular
component and a curricular or course-based
component)

TABLE 2: NEJMEH’S THREE-DIMENSIONAL SERVICE-LEARNING MODEL

Project-based Curricular Service Learning for Cybersecurity Education Project-based Curricular Service Learning for Cybersecurity Education

 8 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

curricular mode, the project gives students abundant
freedom to discover and pursue their specific topics
of interest. Students’ project reports are evaluated
with feedback from the instructor. The total number
of participants in the service learning project is 296
registered students from 11 sections of the course in
3.5-year research period. The following section pres-
ents the data, findings, and discussions from the study.

FINDINGS AND DISCUSSIONS

The total number of participants in the service
learning project is 296 registered students from 11
sections of the course in 3.5-year research period.
Table 3 summarizes the data on the project type and
activity range of the service learning reports submit-
ted by the students. The Category column shows the

specific project type and the activity range of student
submissions. The Total column shows the total count
of each category. The Percentage column shows the
percentage of each category relative to the total sub-
ject population (296).

The data in Table 3 shows a variety of project types
and a wide range of activities, which involve heavy
hands-on experience of applying the knowledge and
skills from the course to real world situations in the
community. The project types include training/tutor-
ing, professional service, recommendation on system
selection, and technical support and troubleshoot-
ing on various cybersecurity topics covered in the
course. The service activity range includes research,
analysis, system testing, system installation, and
performance assessment. The three-semester team
work data shows that nearly half of the students
voluntarily participated in team work, which is an

TABLE 3: SUMMARY OF DATA ON PROJECT TYPE, ACTIVITY RANGE, AND TEAM WORK

CATEGORY TOTAL PERCENTAGE

PROJECT
TYPE

Training/tutoring (sharing cybersecurity knowledge and/or skills, such as on
various cybersecurity risks) 194 65.54%

Professional services (providing expert advice on a cybersecurity issue related
to the course content) 21 7.09%

System selection (identifying cybersecurity needs and recommending solutions) 18 6.08%

Support (providing technical support and troubleshooting on cybersecurity topics) 63 21.28%

ACTIVITY
RANGE

Research (problem identification and concept definition) 65 21.96%

Analysis (requirements discovery, documentation, process/system validation) 82 27.70%

Test (system integration, testing user acceptance, and validation of solution
effectiveness) 55 18.58%

Transition (system installation and migration and delivery of tested system) 51 17.22%

Assessment (assessing system or service performance, efficiency, effectiveness,
and value/impact) 43 14.53%

TEAM
WORK

A team of two collaborates on a service learning project with individual reports
submitted; team work is optional.

37 46.83%

Project-based Curricular Service Learning for Cybersecurity Education Project-based Curricular Service Learning for Cybersecurity Education

 9NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

indicator of substantial interest in collaboration with
others. Students performing the training or service
as well as the trainees and recipients of the student
service have reported remarkable experiences of
knowledge discovery on important cybersecurity
concepts. Additionally, students reported progress
and achievement in conducting hands-on activities
on important cybersecurity issues, such as cyber-
security and privacy research, and the selection,
installation, configuration, and assessment of anti-
virus and firewall protection solutions and products
to secure valuable personal computers and data.

The hands-on application experience from the
service learning has contributed significantly to
students’ success and enjoyment in learning. Over
90% of the student participants in the service learn-
ing project have reported a positive, enjoyable, and
worthwhile experience of using their knowledge
and skills, sharing their knowledge with the com-
munity, and discovering and learning something
new on the cybersecurity topics for their project. The
longitudinal assessment results also support stu-
dents’ improvement in learning through the service
learning project. The course success rate among the
student participants of the service learning project
in the 3.5-year study period is over 91%, which is
13% higher than the average success rate among the
students in this course without the service learning
project during the previous three years. The course
success rate among the team work participants is
over 96% among the three semesters in 2014 with the
team work option.

The service learning project experience has also
developed students’ reflection habit and critical
thinking skills, which are essential to their success
in learning. Critical reflection is a fundamental
component of all service learning experiences and
pedagogy, which is especially important for STEM
disciplines to assess and critique the community’s
technology needs and the impact of service learning
projects (George, 2012). All the reports submitted
for the service learning projects include a section
of reflection and comments on the experience. For
example, many students were surprised that the
people they worked with had no idea about basic
computer protection knowledge and skills. Most
students have also reported that they realized that

they need to learn more about a certain topic to do
better on the service, such as analyzing computer
data communications using a network analyzer.

The service learning project has also developed and
improved students’ professionalism and community
service ethics. Professional and ethical behavior is
especially important for information systems profes-
sionals as sensitive systems and information are often
at stake (Hilton & Mowry, 2012). Professional and
ethical behavior with a strong sense of responsibility
and care for the well-being of others in the commu-
nity is even more important for information systems
security issues. Students have reported discovery
of the importance of legal and ethical rules and
guidelines for cybersecurity professionals, such as
HIPPA for dealing with private health information
in digital format. The majority of the students have
reported great pleasure and pride in helping oth-
ers in the community through the service learning
project. The majority of the trainees and recipients
of the service have reported positive behavior of the
students, including being “responsible,” “profes-
sional,” “caring,” “knowledgeable,” “helpful,” and
“patient”. The observation data is collected from the
required confirmation letters signed by the recipients
of the student service.

Another important reward for students in the service
learning is the improvement in their attitude and
motivation for learning, which will have a long-term
positive effect on their future education and careers.
The majority of the participating students have
reported that the service learning project is such an
enriching and rewarding learning experience that
they found the cybersecurity course content very
useful and interesting and would love to pursue fur-
ther education and a future career in this field. The
increased interest and motivation for learning may
be attributed to the actual hands-on learning, service
ethics, and reinforcement from the community as a
result of the service learning experience.

Project-based Curricular Service Learning for Cybersecurity Education Project-based Curricular Service Learning for Cybersecurity Education

 10 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

CONCLUSION

The project-based curricular service learning used
in this 3.5-year study has improved students’ overall
academic success as well as their reflection and critical
thinking, professional and community service ethics,
and attitude and motivation for knowledge discovery
and sharing. There are several areas for improve-
ment in the future. First, given the initial success of
the service learning project, more course work and
weight in grading could be devoted to service learn-
ing to maximize students’ learning through service.
Also, a solution is needed to facilitate increased team
work and collaboration in the service learning projects
among online students who are geographically scat-
tered. Students working together on service learning
team projects need frequent physical presence together
and communication. A potential solution is to design
virtual service learning projects where students could
perform service components individually in distrib-
uted locations while collaborating and communicating
online in research, analysis, discussions, and assess-
ment. In addition, it would be desirable to develop
stable partnerships with community and industry
organizations who can provide more frequent and
regular opportunities for students to perform service
learning projects.

REFERENCES CITED
Ahmed, Z., Hutter, L., & Plaut, J. (2008). Reflection in Higher
Education Service-Learning. Scotts Valley, CA: Learn and Serve
America’s National Service-Learning Clearinghouse.

Aldas, T., Crispo, V., Johnson, N., & Price, T. A. (2010). Learning by
doing: The Wagner plan from classroom to career. Peer Review, 12 (4).
Retrieved from http://www.aacu.org/peerreview/pr-fa10/Aldas.cfm

Alfieri, L., Brooks, P. J., & Alderich, N. J. (2011). Does
discovery-based instruction enhance learning? Journal
of Educational Psychology, vol. 103 (1), 1 – 18.

Ark, C. (2014, August 27). I studied business and programming, not
English. I still can’t find a job. The Washington Post. Retrieved from
http://www.washingtonpost.com/posteverything/wp/2014/08/27/i-
studied-engineering-not-english-i-still-cant-find-a-job/

Bruner, J. S. (1961). The act of discovery. Harvard
Educational Review, vol. 31, 21 – 32.

Davenport, T. H., De Long, D., & Beers, M. (1998). Successful knowledge
management. Sloan Management Review, vol. 39, 43 – 57.

Desouza, K. (2003). Facilitating tacit knowledge exchange.
Communications of the ACM, vol. 46, June 2003, 85 – 89.

Evangelopoulos, N., Sidorova, A., & Riolli, L. (2003). Can service-learning
help students appreciate an unpopular course? A Theoretical Framework.
Michigan Journal of Community Service Learning, Winter 2003, 15 – 24.

Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior:
An Introduction to Theory and Research. Reading, MA: Addison-Wesley.

George, C. (2012). Is the community partner satisfied? In B. A.
Nejmeh (Ed), Service-learning in the computer and information
sciences (pp.517-530). Hoboken, NJ: John Wiley & Sons, Inc.

Heffernan, K. (2001). Fundamentals of Service-Learning Course
Construction. RI: Campus Compact, 2001, pp 2 – 9.

Hilton, T. S. E., & Mowry, D. D. (2012). Teaching information
systems ethics through service-learning. In B. A. Nejmeh (Ed),
Service-learning in the computer and information sciences
(pp. 243 – 257). Hoboken, NJ: John Wiley & Sons, Inc.

Lincke, S. J. (2011). Service learning in security. Proceedings
of the 15th Colloquium for Information Systems Security
Education, Fairborn, Ohio, June 13-15, 2011, 63 – 68.

Meaney, K., Griffin, K., & Bohler, H. (2009). Service-learning: A venue for
enhancing pre-service educators’ knowledge base for teaching. International
Journal for the Scholarship of Teaching and Learning, 3 (2), 1 – 17.

Morelli, R., de Lanerolle, T. R., & Tucker, A. (2012). The humanitarian free and
open-source software project: Engaging students in service-learning through
building software. In B. A. Nejmeh (Ed), Service-learning in the computer and
information sciences (pp.117 – 136). Hoboken, NJ: John Wiley & Sons, Inc.

National Initiative for Cybersecurity Careers and Studies, US Department
of Homeland Security. (n.d.). Retrieved from http://niccs.us-cert.gov/
header/niccs-helping-you-enhance-your-cybersecurity-knowledge

Nejmeh, B. A. (2012). A framework for service-learning in the computer and
information sciences. In B. A. Nejmeh (Ed), Service-learning in the computer
and information sciences (pp.117 – 136). Hoboken, NJ: John Wiley & Sons, Inc.

Patterson, D. (November, 2005). Rescuing our families, our neighbors,
and ourselves. Communications of the ACM, 48 (11), 29 – 31.

RAND National Security Research Division. (2014). Hackers
wanted: An examination of the information security labor market.
Retrieved from http://www.rand.org/content/dam/rand/pubs/
research_reports/RR400/RR430/RAND_RR430.pdf

Simonet, D. (2008). Service-learning and academic success: The links
to retention research. Minnesota Campus Compact, May 2008, 1 – 13.

Steinberg, K. S., Bringle, R. G., & Williams, M. J. (2010). Service-learning
research primer. Scotts Valley, CA: National Service-Learning Clearinghouse.

United States Department of Labor. (2014). Retrieved
from http://www.bls.gov/ooh/computer-and-information-
technology/information-security-analysts.htm#tab-6

United States Government Accountability Office (GAO). (2011). Cybersecurity
human capital. Retrieved from http://www.gao.gov/products/GAO-12-8

Project-based Curricular Service Learning for Cybersecurity Education Project-based Curricular Service Learning for Cybersecurity Education

 11NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Wang, P. (2013). Assessment of Cybersecurity knowledge and
behavior: An anti-phishing scenario. Proceedings of ICIMP 2013:
The Eighth International Conference on Internet Monitoring
and Protection, Rome, Italy, June 23-28, 2013, 1 – 10.

Wang, P. (2010). Information security knowledge and behavior:
An adapted model of technology acceptance. 2nd International
Conference on Educational Technology and Computer (ICETC),
June 2010, 364-367. DOI: 10.1109/ICETC.2010.5529366.

Warren, J. L. (2012). Does Service-Learning increase
student learning?: A meta-analysis. Michigan Journal of
Community Service Learning, Spring 2012, 56 – 61.

AUTHOR

Ping Wang (pwang2050@yahoo.com) is a professor of
cybersecurity at the Graduate School of University
of Maryland University College, where he teaches
courses in cybersecurity, network security, pen testing,
and digital forensics and also served as director of the
master’s program in cybersecurity for two years. Dr.
Wang holds a master’s degree in computer informa-
tion science and a doctorate in information systems
with specialization in e-commerce security risks and
decisions. Dr. Wang is a Certified Information Systems
Security Professional (CISSP) with consulting and
development experience in cybersecurity and informa-
tion systems and technology.

A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker PayoffsProject-based Curricular Service Learning for Cybersecurity Education

 12 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

A Probabilistic Framework for Quantifying Mixed
Uncertainties in Cyber Attacker Payoffs

Samrat Chatterjee | Ramakrishna Tipireddy | Matthew Oster | Mahantesh Halappanavar

INTRODUCTION

Recent cybersecurity incidents involving data theft
that impacted federal government employees and
contractors (U.S. Office of Personnel Management,
2015) have heightened the importance of designing
and maintaining sound cyber defense mechanisms
that include proactive, preventative, and reactive
cybersecurity measures. Securing cyber systems on a
continual basis against multiple types of malicious
attacks (e.g. confidential data theft, unauthorized web
server access, or denial-of-service) is a challenging
problem both from a research standpoint and in prac-
tice. Cyber system administrators (defenders) typically
have limited available resources to allocate among a
variety of protective measures. Cyber attackers, how-
ever, operate at relatively low costs. Thus, developing
a resilient cyber system that can support mission goals
when compromised is an important problem and is the
topic of discussion within this paper.

To effectively allocate protective resources against
multiple (often unknown) attackers, a cyber defender
must account for uncertainties in attack types
and cyber system operational behaviors over time.
Mathematical modeling and analysis might provide
a mechanism for structuring this resource allocation
decision-making process. In particular, game-theoretic
approaches involving strategic decision-makers
(i.e. cyber attackers and defenders) with differing

theories to propagate various uncertainties
in the attacker payoffs. An additional goal
of this paper is to increase awareness about
this problem domain among practitioners and
researchers, and encourage further advance-
ments in this area.

ABSTRACT

Recent cybersecurity incidents involving
data theft from the U.S. Office of Personnel
Management have heightened the importance
of designing resilient cyber systems that can
support mission goals when compromised.
However, securing such systems on a con-
tinual basis against multiple types of malicious
attacks is an ongoing challenge. Cyber sys-
tem administrators (defenders) typically have
limited protective resources that need to be
effectively allocated to thwart cyber attackers
operating at relatively low costs. Game theory-
based mathematical modeling approaches
(involving strategic decision-makers) are
increasingly being adopted for such cyber-
security challenges. This paper contributes
to the state-of-the-art by highlighting the
importance of quantifying several sources and
types of uncertainty impacting cyber attacker
payoffs (defined as a penalty or reward based
on actions) within this problem space. These
uncertainties arise due to randomness or lack
of knowledge associated with cyber system
operational behaviors, attacker types, and
attack and defense actions over time. This
paper explores the mathematical treatment of
such mixed payoff uncertainties. A probabilis-
tic modeling framework for representing cyber
attacker payoffs under uncertainty is presented
and a conditional probabilistic reasoning
approach is adopted to organize the dependen-
cies between a cyber system’s state, attacker
type, player actions, and state transitions. This
also enables the application of probabilistic

A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

 13NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Project-based Curricular Service Learning for Cybersecurity Education

objectives have been researched extensively over the
past decade (Roy et al., 2010; Liang and Xiao, 2013).
Prior studies indicate that further research should
include enhanced focus on characterizing attacker
payoff (defined as a penalty or reward received by a
player based on actions within a game-theoretic set-
ting) functions. Attacker penalty refers to the attack
planning and execution costs. Attacker reward may
be represented as the damage and disruption that fol-
lows a successful attack. These cyber attacker payoff
functions are typically subject to uncertainties (due
to randomness and lack of knowledge) associated
with system operational states, attacker types, player
actions, and state transitions.

This paper focuses on the development of a proba-
bilistic modeling framework for representing cyber
attacker payoffs under uncertainty. Various sources
of payoff uncertainty include: (1) cyber system state,
(2) attacker type, (3) choice of player actions, and (4)
cyber system state transitions over time. A conditional
probabilistic reasoning approach is adopted to orga-
nize the dependencies between a cyber system’s state,
attacker type, player actions, and state transitions.
This also enables the application of probabilistic theo-
ries to propagate various uncertainties in the attacker
payoffs. The paper aims to highlight this important
uncertainty quantification problem space to the cyber-
security research community and discusses classes of
stochastic games for cybersecurity, sources and types
of attacker payoff uncertainties, and approaches for
representation and propagation of these uncertainties
within a probabilistic setting.

STOCHASTIC GAMES FOR CYBERSECURITY

Overview and Context

Game theory is a mathematical tool that aids deci-
sion-making between multiple entities acting in a
system towards individual perceived outcomes. A
game consists of two or more entities (or players),
each equipped with a set of actions. Play of the game
involves players choosing actions in some order result-
ing in a change in system state. Players assign values to
such states; this value function is the primary decision
driver within the game. Games are typically differen-
tiated by how many players are involved, the order
and length of play, whether the players cooperate or

compete against one another, and by how much infor-
mation each player possesses of past play as well as of
each other’s system state values.

A simple example of a game is the well-known
Prisoner’s Dilemma (Stanford Encyclopedia of
Philosophy, 2014). This game involves two players,
both of whom are being questioned separately by
authorities who believe at least one of the players has
committed some crime. Either player may choose to
cooperate with the authorities by confessing to the
crime, or with each other by abstaining from talking
to the interrogators. If both players talk, then they
receive more time in prison than if they had both
stayed silent. However, if only one player confesses,
then he or she receives the largest prison sentence of
any scenario, while the other (silent) player is free
of any sentence. Since time in prison is valued as a
penalty, the goal of each player is to take the action at
some point in time which he or she believes will result
in serving the least amount of time in prison.

Once the structure of the game is known, players
must make decisions as to how they maneuver within
the game by choosing a strategy. For example, one
player in the Prisoner’s Dilemma game might choose
to confess to the crime immediately, believing that the
other player might do the same. Do these individu-
als make their plays in response to the other’s actions
or simultaneously? Do they know which play each
other will make or is some uncertainty placed on
their choices? A common way for players to choose a
(robust) strategy is to find a type of equilibrium or a
set of player strategies where each is a best response to
the others. In other words, if everyone committed to
their respective strategy, then no single player would
benefit from deviating.

In the context of cybersecurity, game theory plays a
key role in helping defenders of cyber systems limit
the impact of adversarial events (Liang and Xiao,
2013). For example, a cyber system administrator
familiar with the network architecture, valuation of
information contained within firewalls, and the types
of attackers that would be interested in such informa-
tion may utilize the theory of games to weigh certain
sequences of protective actions against hypothetical
attackers and ultimately plan more strategically under
resource constraints. Figure 1 presents classes of

FIGURE 1: TYPES OF NON-COOPERATIVE GAME MODELS FOR CYBERSECURITY (ADAPTED FROM ROY ET AL., 2010)

A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

 14 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

non-cooperative games depicted by choosing a path
from the top-most level to the bottom. In the next
section, we formally define these concepts.

Concepts and Notation

A game is a tuple (𝑃,𝒜,𝒰), where 𝑃 is a set of
players,

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 is the collection of each
player’s set of actions,

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 , and

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

is the collection of each player’s utility or payoff
function

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

. Let us define

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 and

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 for each

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

. If

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

, and the
number of rounds of play are all finite, then we say
the game is a finite game; otherwise it is an infinite

game. If each action set is continuous, we say the
game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting,
at specified points in time. If each player acts only
once in the game, it is said to be a static game,
otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at
the same time, otherwise it is sequential. Each action
tuple

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

, where

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 is
called a play of the game and has a value, or payoff,
of

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 to player

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

. If

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 for
each

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

, the game is a zero-sum game, otherwise

compete against one another, and by how much infor-
mation each player possesses of past play as well as of
each other’s system state values.

A simple example of a game is the well-known
Prisoner’s Dilemma (Stanford Encyclopedia of
Philosophy, 2014). This game involves two players,
both of whom are being questioned separately by
authorities who believe at least one of the players has
committed some crime. Either player may choose to
cooperate with the authorities by confessing to the
crime, or with each other by abstaining from talking
to the interrogators. If both players talk, then they
receive more time in prison than if they had both
stayed silent. However, if only one player confesses,
then he or she receives the largest prison sentence of
any scenario, while the other (silent) player is free
of any sentence. Since time in prison is valued as a
penalty, the goal of each player is to take the action at
some point in time which he or she believes will result
in serving the least amount of time in prison.

Once the structure of the game is known, players
must make decisions as to how they maneuver within
the game by choosing a strategy. For example, one
player in the Prisoner’s Dilemma game might choose
to confess to the crime immediately, believing that the
other player might do the same. Do these individu-
als make their plays in response to the other’s actions
or simultaneously? Do they know which play each
other will make or is some uncertainty placed on
their choices? A common way for players to choose a
(robust) strategy is to find a type of equilibrium or a
set of player strategies where each is a best response to
the others. In other words, if everyone committed to
their respective strategy, then no single player would
benefit from deviating.

In the context of cybersecurity, game theory plays a
key role in helping defenders of cyber systems limit
the impact of adversarial events (Liang and Xiao,
2013). For example, a cyber system administrator
familiar with the network architecture, valuation of
information contained within firewalls, and the types
of attackers that would be interested in such informa-
tion may utilize the theory of games to weigh certain
sequences of protective actions against hypothetical
attackers and ultimately plan more strategically under
resource constraints. Figure 1 presents classes of

FIGURE 1: TYPES OF NON-COOPERATIVE GAME MODELS FOR CYBERSECURITY (ADAPTED FROM ROY ET AL., 2010)

A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

 15NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

it is called a general-sum game. If the action sets of
all players are identical and the utility functions are
independent of who played each action, then the
game has symmetric payoffs, and otherwise they are
asymmetric.

A strategy set for a player

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 is the set

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

, and
each vector

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 is called a strategy. A strategy

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 for any player is said to be pure if the support

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

, and otherwise it is called a mixed strat-
egy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strate-
gies

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

, where

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

, the
expected payoff for player

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function . is the value of the

function

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function ..

Player

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 is deemed rational if decisions made at
any point in time are always “best,” i.e. player

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 is
considered rational if he or she chooses a strategy Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is

considered rational if he or she chooses a strategy which maximizes his or her expected payoff
, given some information about for ; otherwise, the player is irrational. In static and

simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player
, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

 which maximizes his or her expected
payoff

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

, given some information about

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

 for
Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

; otherwise, the player is irrational. In static
and simultaneous games, a given tuple of strategies

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

 is called a Nash equilibrium if for each player

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

, the value of

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

 is locally optimum,
i.e.

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

 for each

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

, with

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

whenever

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

.

Figure 2 presents the concept of Nash Equilibrium
pictorially using the Prisoner’s Dilemma example.
Here we have two heatmaps, the left corresponding
to the expected payoffs for Player 1 and the right
to those of Player 2. We let the payoffs be quanti-
fied so that both players received two years in jail if
both confess, one year in jail if neither confesses, and
three years in jail for the single player betraying the
other. Each plot’s

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

-axis represents the percentage of
Player 1’s strategy dedicated to talking to authorities
(‘Betray’), while each

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

-axis represents the same but
for Player 2’s strategy. The axes have been discretized
and the values presented for any (

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

,

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

) strategy pair
represent the corresponding player’s expected pay-
off. A Nash Equilibrium in this example is an (

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

,

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

)
coordinate in which no cell within column

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

 of the
left plot is better (lighter in color) and similarly no
cell within row

Player is deemed rational if decisions made at any point in time are always “best,” i.e. player is
considered rational if he or she chooses a strategy which maximizes his or her expected payoff

, given some information about for ; otherwise, the player is irrational. In static and
simultaneous games, a given tuple of strategies is called a Nash equilibrium if for each player

, the value of is locally optimum, i.e. for each , with whenever
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to
those of Player 2. We let the payoffs be quantified so that both players received two years in jail if both
confess, one year in jail if neither confesses, and three years in jail for the single player betraying the
other. Each plot’s -axis represents the percentage of Player 1’s strategy dedicated to talking to
authorities (‘Betray’), while each -axis represents the same but for Player 2’s strategy. The axes have
been discretized and the values showing for any strategy pair represent the corresponding player’s
expected payoff. A Nash Equilibrium in this example is an coordinate in which no cell within
column of the left plot is better (lighter in color) and similarly no cell within row of the right plot is
better (lighter in color). Thus, the bottom left corner is a Nash Equilibrium, translating to a robust
strategy for the players where neither should confess to the authorities.

Figure 2. Pictorial Representation of the Nash Equilibrium Concept

If every player is aware of every other player’s payoff function, the game has complete information;
otherwise it has incomplete information. Further, if every player knows all the past plays of the game,
then the game has perfect information and otherwise imperfect information. A hierarchical diagram of
these concepts is found in Figure 1. Notice that whenever a game is static, there can be no past
information to learn, and hence all static games are, by default, imperfect games.

To relate these concepts back to our example, the Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player, non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and symmetric payoffs.

• It is considered a finite game since there are only two players, each with two distinct actions; if
the players had infinitely many actions, e.g. degrees of involvement with distinct payoffs for

 of the right plot is better (lighter in
color). Thus, the bottom left corner (0,0) is a Nash
Equilibrium, translating to a robust strategy for the
players where neither should confess to the authorities.

FIGURE 2: PICTORIAL REPRESENTATION OF THE NASH EQUILIBRIUM CONCEPT

A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

 16 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

If every player is aware of every other player’s payoff
function and type, the game has complete informa-
tion; otherwise it has incomplete information. Further,
if every player knows all the past plays of the game,
then the game has perfect information and otherwise
imperfect information. A hierarchical diagram of these
concepts is found in Figure 1. Notice that whenever
a game is static, there can be no past information
to learn, and hence all static games are, by default,
imperfect games.

To relate these concepts back to our example, the
Prisoner’s Dilemma, we observed that the original
interpretation of the problem is a finite, two-player,
non-cooperative, static, simultaneous, general-sum
game with imperfect and complete information and
symmetric payoffs.

 � It is considered a finite game since there are
only two players, each with two distinct actions;
if the players had infinitely many actions, e.g.
degrees of involvement with distinct payoffs
for each, or if play of the game continued
on for an infinite number of rounds, then it
would be classified as an infinite game.

 � It is a non-cooperative game since the players
cannot speak to one another (and we assume
they have not planned their choices before
being accused of the crime) and since they
cannot form a coalition against another
party; if communication were allowed then
such a game would be a cooperative game.

 � It is a static game, since each player gets one
chance to confess before play is over; if the
game had multiple stages (e.g., multiple crimes
to confess to), then it would become dynamic.

 � It is a simultaneous game, in essence, since neither
player learns about the other’s decision before
play is over; if, however, once the first player
confessed, the second one was notified before
acting, this would change the game to sequential.

 � It is a general-sum game since the sum of the
payoffs over the players for any action is non-zero;
if for every play one player lost in value what
the other gained (e.g., monetary settlements),
then this would become a zero-sum game.

 � It is a game with imperfect information since
there is no past; if, however, the players had
been in this situation in the past for a dif-
ferent crime and the players’ past decisions
influenced present choices, then this would
become a game with perfect information.

 � It is a game with complete information since the
players know each other’s payoffs; if the players
played according to an uncertain utility func-
tion of each play’s payoff (e.g. one player gets
paid to serve a longer sentence) which is further
unknown to the opposing player, then we would
have a game with incomplete information.

 � Finally, the game has symmetric payoffs since
each player receives the same sentence in
similar scenarios; if, for example, one player
had a previous record and would receive
more time in jail upon confessing, then the
game would become an asymmetric game.

To recap, we have the following high-level concepts
categorized with some notation and key notes:

 � players (

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

,

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

)

 � two or more decision-makers play the game

 � assume they act intelligently or rationally,
i.e. never deviate from ‘best’

 � actions (

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 for

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

)

 � player

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

’s action is an element

each, or if play of the game continued on for an infinite number of rounds, then it would be
classified as an infinite game.

• It is a non-cooperative game since the players cannot speak to one another (and we assume they
have not planned their choices before being accused of the crime) and since they cannot form a
coalition against another party; if communication were allowed then such a game would be a
cooperative game.

• It is a static game, since each player gets one chance to confess before play is over; if the game
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before
play is over; if, however, once the first player confessed, the second one was notified before
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero;
if for every play one player lost in value what the other gained (e.g. monetary settlements), then
this would become a zero-sum game.

• It is a game with imperfect information since there is no past; if, however, the players had been in
this situation in the past for a different crime and the players’ past decisions influenced present
choices, then this would become a game with perfect information.

• It is a game with complete information since the players know each other’s payoffs; if the players
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid
to serve a longer sentence) which is further unknown to the opposing player, then we would have
a game with incomplete information.

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar
scenarios; if, for example, one player had a previous record and would receive more time in jail
upon confessing, then the game would become an asymmetric game.

To recap, we have the following high-level concepts categorized with some notation and key notes:
• players (,)

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’

• actions (for)
o player 's action is an element , possibly infinitely many
o a play is a tuple in the set

• payoff functions (for)
o each player places a value on each play
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect)
o complete information means each player knows all others’ payoff values for each play

(know value of each possible outcome)
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes)
• play (sequential/simultaneous; static/dynamic)

o simultaneous means no information on play before choosing one’s own
o static means only one act per player

<B head> Game Implications for Cyber Systems
In cybersecurity, we typically model a non-cooperative game in which players act and where system state
transitions reflect changes in the network’s operational behavior. To this end, we augment the game tuple
to include the finite—albeit generally very large—system state set , and the transition function

 taking a state and a play , and transitioning it to the next state . The

, possibly infinitely many

 � a play is a tuple

each, or if play of the game continued on for an infinite number of rounds, then it would be
classified as an infinite game.

• It is a non-cooperative game since the players cannot speak to one another (and we assume they
have not planned their choices before being accused of the crime) and since they cannot form a
coalition against another party; if communication were allowed then such a game would be a
cooperative game.

• It is a static game, since each player gets one chance to confess before play is over; if the game
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before
play is over; if, however, once the first player confessed, the second one was notified before
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero;
if for every play one player lost in value what the other gained (e.g. monetary settlements), then
this would become a zero-sum game.

• It is a game with imperfect information since there is no past; if, however, the players had been in
this situation in the past for a different crime and the players’ past decisions influenced present
choices, then this would become a game with perfect information.

• It is a game with complete information since the players know each other’s payoffs; if the players
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid
to serve a longer sentence) which is further unknown to the opposing player, then we would have
a game with incomplete information.

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar
scenarios; if, for example, one player had a previous record and would receive more time in jail
upon confessing, then the game would become an asymmetric game.

To recap, we have the following high-level concepts categorized with some notation and key notes:
• players (,)

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’

• actions (for)
o player 's action is an element , possibly infinitely many
o a play is a tuple in the set

• payoff functions (for)
o each player places a value on each play
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect)
o complete information means each player knows all others’ payoff values for each play

(know value of each possible outcome)
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes)
• play (sequential/simultaneous; static/dynamic)

o simultaneous means no information on play before choosing one’s own
o static means only one act per player

<B head> Game Implications for Cyber Systems
In cybersecurity, we typically model a non-cooperative game in which players act and where system state
transitions reflect changes in the network’s operational behavior. To this end, we augment the game tuple
to include the finite—albeit generally very large—system state set , and the transition function

 taking a state and a play , and transitioning it to the next state . The

in the set

each, or if play of the game continued on for an infinite number of rounds, then it would be
classified as an infinite game.

• It is a non-cooperative game since the players cannot speak to one another (and we assume they
have not planned their choices before being accused of the crime) and since they cannot form a
coalition against another party; if communication were allowed then such a game would be a
cooperative game.

• It is a static game, since each player gets one chance to confess before play is over; if the game
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before
play is over; if, however, once the first player confessed, the second one was notified before
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero;
if for every play one player lost in value what the other gained (e.g. monetary settlements), then
this would become a zero-sum game.

• It is a game with imperfect information since there is no past; if, however, the players had been in
this situation in the past for a different crime and the players’ past decisions influenced present
choices, then this would become a game with perfect information.

• It is a game with complete information since the players know each other’s payoffs; if the players
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid
to serve a longer sentence) which is further unknown to the opposing player, then we would have
a game with incomplete information.

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar
scenarios; if, for example, one player had a previous record and would receive more time in jail
upon confessing, then the game would become an asymmetric game.

To recap, we have the following high-level concepts categorized with some notation and key notes:
• players (,)

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’

• actions (for)
o player 's action is an element , possibly infinitely many
o a play is a tuple in the set

• payoff functions (for)
o each player places a value on each play
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect)
o complete information means each player knows all others’ payoff values for each play

(know value of each possible outcome)
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes)
• play (sequential/simultaneous; static/dynamic)

o simultaneous means no information on play before choosing one’s own
o static means only one act per player

<B head> Game Implications for Cyber Systems
In cybersecurity, we typically model a non-cooperative game in which players act and where system state
transitions reflect changes in the network’s operational behavior. To this end, we augment the game tuple
to include the finite—albeit generally very large—system state set , and the transition function

 taking a state and a play , and transitioning it to the next state . The

 � payoff functions

each, or if play of the game continued on for an infinite number of rounds, then it would be
classified as an infinite game.

• It is a non-cooperative game since the players cannot speak to one another (and we assume they
have not planned their choices before being accused of the crime) and since they cannot form a
coalition against another party; if communication were allowed then such a game would be a
cooperative game.

• It is a static game, since each player gets one chance to confess before play is over; if the game
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before
play is over; if, however, once the first player confessed, the second one was notified before
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero;
if for every play one player lost in value what the other gained (e.g. monetary settlements), then
this would become a zero-sum game.

• It is a game with imperfect information since there is no past; if, however, the players had been in
this situation in the past for a different crime and the players’ past decisions influenced present
choices, then this would become a game with perfect information.

• It is a game with complete information since the players know each other’s payoffs; if the players
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid
to serve a longer sentence) which is further unknown to the opposing player, then we would have
a game with incomplete information.

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar
scenarios; if, for example, one player had a previous record and would receive more time in jail
upon confessing, then the game would become an asymmetric game.

To recap, we have the following high-level concepts categorized with some notation and key notes:
• players (,)

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’

• actions (for)
o player 's action is an element , possibly infinitely many
o a play is a tuple in the set

• payoff functions (for)
o each player places a value on each play
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect)
o complete information means each player knows all others’ payoff values for each play

(know value of each possible outcome)
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes)
• play (sequential/simultaneous; static/dynamic)

o simultaneous means no information on play before choosing one’s own
o static means only one act per player

<B head> Game Implications for Cyber Systems
In cybersecurity, we typically model a non-cooperative game in which players act and where system state
transitions reflect changes in the network’s operational behavior. To this end, we augment the game tuple
to include the finite—albeit generally very large—system state set , and the transition function

 taking a state and a play , and transitioning it to the next state . The

 � each player

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 places a value

each, or if play of the game continued on for an infinite number of rounds, then it would be
classified as an infinite game.

• It is a non-cooperative game since the players cannot speak to one another (and we assume they
have not planned their choices before being accused of the crime) and since they cannot form a
coalition against another party; if communication were allowed then such a game would be a
cooperative game.

• It is a static game, since each player gets one chance to confess before play is over; if the game
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before
play is over; if, however, once the first player confessed, the second one was notified before
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero;
if for every play one player lost in value what the other gained (e.g. monetary settlements), then
this would become a zero-sum game.

• It is a game with imperfect information since there is no past; if, however, the players had been in
this situation in the past for a different crime and the players’ past decisions influenced present
choices, then this would become a game with perfect information.

• It is a game with complete information since the players know each other’s payoffs; if the players
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid
to serve a longer sentence) which is further unknown to the opposing player, then we would have
a game with incomplete information.

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar
scenarios; if, for example, one player had a previous record and would receive more time in jail
upon confessing, then the game would become an asymmetric game.

To recap, we have the following high-level concepts categorized with some notation and key notes:
• players (,)

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’

• actions (for)
o player 's action is an element , possibly infinitely many
o a play is a tuple in the set

• payoff functions (for)
o each player places a value on each play
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect)
o complete information means each player knows all others’ payoff values for each play

(know value of each possible outcome)
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes)
• play (sequential/simultaneous; static/dynamic)

o simultaneous means no information on play before choosing one’s own
o static means only one act per player

<B head> Game Implications for Cyber Systems
In cybersecurity, we typically model a non-cooperative game in which players act and where system state
transitions reflect changes in the network’s operational behavior. To this end, we augment the game tuple
to include the finite—albeit generally very large—system state set , and the transition function

 taking a state and a play , and transitioning it to the next state . The

 on each play

each, or if play of the game continued on for an infinite number of rounds, then it would be
classified as an infinite game.

• It is a non-cooperative game since the players cannot speak to one another (and we assume they
have not planned their choices before being accused of the crime) and since they cannot form a
coalition against another party; if communication were allowed then such a game would be a
cooperative game.

• It is a static game, since each player gets one chance to confess before play is over; if the game
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before
play is over; if, however, once the first player confessed, the second one was notified before
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero;
if for every play one player lost in value what the other gained (e.g. monetary settlements), then
this would become a zero-sum game.

• It is a game with imperfect information since there is no past; if, however, the players had been in
this situation in the past for a different crime and the players’ past decisions influenced present
choices, then this would become a game with perfect information.

• It is a game with complete information since the players know each other’s payoffs; if the players
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid
to serve a longer sentence) which is further unknown to the opposing player, then we would have
a game with incomplete information.

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar
scenarios; if, for example, one player had a previous record and would receive more time in jail
upon confessing, then the game would become an asymmetric game.

To recap, we have the following high-level concepts categorized with some notation and key notes:
• players (,)

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’

• actions (for)
o player 's action is an element , possibly infinitely many
o a play is a tuple in the set

• payoff functions (for)
o each player places a value on each play
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect)
o complete information means each player knows all others’ payoff values for each play

(know value of each possible outcome)
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes)
• play (sequential/simultaneous; static/dynamic)

o simultaneous means no information on play before choosing one’s own
o static means only one act per player

<B head> Game Implications for Cyber Systems
In cybersecurity, we typically model a non-cooperative game in which players act and where system state
transitions reflect changes in the network’s operational behavior. To this end, we augment the game tuple
to include the finite—albeit generally very large—system state set , and the transition function

 taking a state and a play , and transitioning it to the next state . The

 � may not be reciprocal or zero-sum

 � information ([in]complete, [im]perfect)

 � complete information means each player
knows all others’ payoff values for each play
(know value of each possible outcome)

 � perfect means you know all previous
plays (know history of plays and
corresponding outcomes)

A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

 17NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

 � play (sequential/simultaneous; static/dynamic)

 � simultaneous means no information
on play before choosing one’s own

 � static means only one act per player

Game Implications for Cyber Systems

In cybersecurity, we typically model a non-cooperative
game in which players act and where system state
transitions reflect changes in the network’s operational
behavior. To this end, we augment the game tuple to
include the finite—albeit generally very large—system
state set

each, or if play of the game continued on for an infinite number of rounds, then it would be
classified as an infinite game.

• It is a non-cooperative game since the players cannot speak to one another (and we assume they
have not planned their choices before being accused of the crime) and since they cannot form a
coalition against another party; if communication were allowed then such a game would be a
cooperative game.

• It is a static game, since each player gets one chance to confess before play is over; if the game
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before
play is over; if, however, once the first player confessed, the second one was notified before
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero;
if for every play one player lost in value what the other gained (e.g. monetary settlements), then
this would become a zero-sum game.

• It is a game with imperfect information since there is no past; if, however, the players had been in
this situation in the past for a different crime and the players’ past decisions influenced present
choices, then this would become a game with perfect information.

• It is a game with complete information since the players know each other’s payoffs; if the players
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid
to serve a longer sentence) which is further unknown to the opposing player, then we would have
a game with incomplete information.

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar
scenarios; if, for example, one player had a previous record and would receive more time in jail
upon confessing, then the game would become an asymmetric game.

To recap, we have the following high-level concepts categorized with some notation and key notes:
• players (,)

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’

• actions (for)
o player 's action is an element , possibly infinitely many
o a play is a tuple in the set

• payoff functions (for)
o each player places a value on each play
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect)
o complete information means each player knows all others’ payoff values for each play

(know value of each possible outcome)
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes)
• play (sequential/simultaneous; static/dynamic)

o simultaneous means no information on play before choosing one’s own
o static means only one act per player

<B head> Game Implications for Cyber Systems
In cybersecurity, we typically model a non-cooperative game in which players act and where system state
transitions reflect changes in the network’s operational behavior. To this end, we augment the game tuple
to include the finite—albeit generally very large—system state set , and the transition function

 taking a state and a play , and transitioning it to the next state . The
, and the transition function

each, or if play of the game continued on for an infinite number of rounds, then it would be
classified as an infinite game.

• It is a non-cooperative game since the players cannot speak to one another (and we assume they
have not planned their choices before being accused of the crime) and since they cannot form a
coalition against another party; if communication were allowed then such a game would be a
cooperative game.

• It is a static game, since each player gets one chance to confess before play is over; if the game
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before
play is over; if, however, once the first player confessed, the second one was notified before
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero;
if for every play one player lost in value what the other gained (e.g. monetary settlements), then
this would become a zero-sum game.

• It is a game with imperfect information since there is no past; if, however, the players had been in
this situation in the past for a different crime and the players’ past decisions influenced present
choices, then this would become a game with perfect information.

• It is a game with complete information since the players know each other’s payoffs; if the players
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid
to serve a longer sentence) which is further unknown to the opposing player, then we would have
a game with incomplete information.

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar
scenarios; if, for example, one player had a previous record and would receive more time in jail
upon confessing, then the game would become an asymmetric game.

To recap, we have the following high-level concepts categorized with some notation and key notes:
• players (,)

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’

• actions (for)
o player 's action is an element , possibly infinitely many
o a play is a tuple in the set

• payoff functions (for)
o each player places a value on each play
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect)
o complete information means each player knows all others’ payoff values for each play

(know value of each possible outcome)
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes)
• play (sequential/simultaneous; static/dynamic)

o simultaneous means no information on play before choosing one’s own
o static means only one act per player

<B head> Game Implications for Cyber Systems
In cybersecurity, we typically model a non-cooperative game in which players act and where system state
transitions reflect changes in the network’s operational behavior. To this end, we augment the game tuple
to include the finite—albeit generally very large—system state set , and the transition function

 taking a state and a play , and transitioning it to the next state . The
taking a state

each, or if play of the game continued on for an infinite number of rounds, then it would be
classified as an infinite game.

• It is a non-cooperative game since the players cannot speak to one another (and we assume they
have not planned their choices before being accused of the crime) and since they cannot form a
coalition against another party; if communication were allowed then such a game would be a
cooperative game.

• It is a static game, since each player gets one chance to confess before play is over; if the game
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before
play is over; if, however, once the first player confessed, the second one was notified before
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero;
if for every play one player lost in value what the other gained (e.g. monetary settlements), then
this would become a zero-sum game.

• It is a game with imperfect information since there is no past; if, however, the players had been in
this situation in the past for a different crime and the players’ past decisions influenced present
choices, then this would become a game with perfect information.

• It is a game with complete information since the players know each other’s payoffs; if the players
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid
to serve a longer sentence) which is further unknown to the opposing player, then we would have
a game with incomplete information.

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar
scenarios; if, for example, one player had a previous record and would receive more time in jail
upon confessing, then the game would become an asymmetric game.

To recap, we have the following high-level concepts categorized with some notation and key notes:
• players (,)

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’

• actions (for)
o player 's action is an element , possibly infinitely many
o a play is a tuple in the set

• payoff functions (for)
o each player places a value on each play
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect)
o complete information means each player knows all others’ payoff values for each play

(know value of each possible outcome)
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes)
• play (sequential/simultaneous; static/dynamic)

o simultaneous means no information on play before choosing one’s own
o static means only one act per player

<B head> Game Implications for Cyber Systems
In cybersecurity, we typically model a non-cooperative game in which players act and where system state
transitions reflect changes in the network’s operational behavior. To this end, we augment the game tuple
to include the finite—albeit generally very large—system state set , and the transition function

 taking a state and a play , and transitioning it to the next state . The and a play

each, or if play of the game continued on for an infinite number of rounds, then it would be
classified as an infinite game.

• It is a non-cooperative game since the players cannot speak to one another (and we assume they
have not planned their choices before being accused of the crime) and since they cannot form a
coalition against another party; if communication were allowed then such a game would be a
cooperative game.

• It is a static game, since each player gets one chance to confess before play is over; if the game
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before
play is over; if, however, once the first player confessed, the second one was notified before
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero;
if for every play one player lost in value what the other gained (e.g. monetary settlements), then
this would become a zero-sum game.

• It is a game with imperfect information since there is no past; if, however, the players had been in
this situation in the past for a different crime and the players’ past decisions influenced present
choices, then this would become a game with perfect information.

• It is a game with complete information since the players know each other’s payoffs; if the players
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid
to serve a longer sentence) which is further unknown to the opposing player, then we would have
a game with incomplete information.

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar
scenarios; if, for example, one player had a previous record and would receive more time in jail
upon confessing, then the game would become an asymmetric game.

To recap, we have the following high-level concepts categorized with some notation and key notes:
• players (,)

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’

• actions (for)
o player 's action is an element , possibly infinitely many
o a play is a tuple in the set

• payoff functions (for)
o each player places a value on each play
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect)
o complete information means each player knows all others’ payoff values for each play

(know value of each possible outcome)
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes)
• play (sequential/simultaneous; static/dynamic)

o simultaneous means no information on play before choosing one’s own
o static means only one act per player

<B head> Game Implications for Cyber Systems
In cybersecurity, we typically model a non-cooperative game in which players act and where system state
transitions reflect changes in the network’s operational behavior. To this end, we augment the game tuple
to include the finite—albeit generally very large—system state set , and the transition function

 taking a state and a play , and transitioning it to the next state . The , and
transitioning it to the next state

each, or if play of the game continued on for an infinite number of rounds, then it would be
classified as an infinite game.

• It is a non-cooperative game since the players cannot speak to one another (and we assume they
have not planned their choices before being accused of the crime) and since they cannot form a
coalition against another party; if communication were allowed then such a game would be a
cooperative game.

• It is a static game, since each player gets one chance to confess before play is over; if the game
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before
play is over; if, however, once the first player confessed, the second one was notified before
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero;
if for every play one player lost in value what the other gained (e.g. monetary settlements), then
this would become a zero-sum game.

• It is a game with imperfect information since there is no past; if, however, the players had been in
this situation in the past for a different crime and the players’ past decisions influenced present
choices, then this would become a game with perfect information.

• It is a game with complete information since the players know each other’s payoffs; if the players
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid
to serve a longer sentence) which is further unknown to the opposing player, then we would have
a game with incomplete information.

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar
scenarios; if, for example, one player had a previous record and would receive more time in jail
upon confessing, then the game would become an asymmetric game.

To recap, we have the following high-level concepts categorized with some notation and key notes:
• players (,)

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’

• actions (for)
o player 's action is an element , possibly infinitely many
o a play is a tuple in the set

• payoff functions (for)
o each player places a value on each play
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect)
o complete information means each player knows all others’ payoff values for each play

(know value of each possible outcome)
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes)
• play (sequential/simultaneous; static/dynamic)

o simultaneous means no information on play before choosing one’s own
o static means only one act per player

<B head> Game Implications for Cyber Systems
In cybersecurity, we typically model a non-cooperative game in which players act and where system state
transitions reflect changes in the network’s operational behavior. To this end, we augment the game tuple
to include the finite—albeit generally very large—system state set , and the transition function

 taking a state and a play , and transitioning it to the next state . The . The
available actions for each player

Figure 1. Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)

<B head>Concepts and Notation
A game is a tuple , where is a set of players, is the collection of each
player’s set of actions, , and is the collection of each player’s utility or payoff
function . Let us define and for each . If , , and the
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game. If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time. If each player acts only
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game
dynamic. The game is simultaneous if players act at the same time, otherwise it is sequential. Each
action tuple , where is called a play of the game and has a value, or
payoff, of to player . If for each , the game is a zero-sum game,
otherwise it is called a general-sum game. If the action sets of all players are identical and the utility
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise
they are asymmetric.

A strategy set for a player is the set , and each
vector is called a strategy. A strategy for any player is said to be pure if the support
|supp()| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the
actions to be taken). Given a tuple of player strategies , where , the
expected payoff for player is the value of the function .

 are limited to
only those that make sense when the system is in the
state

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

 (e.g., a network administration will not shut
down a file server when it is running normally, but
he or she may do so when an adversary is observed
stealing information from it); thus we distinguish these
subsets with a superscript,

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

. Furthermore, any play

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

 may probabilistically transition the state from

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

to many other states

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

. We define this probabilistic
function as

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

, and typically rewrite
it as

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

, meaning

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

 is the conditional
probability function that yields the likelihood of
sending the system from state

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

whenever play

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

is made.

In the following section, various sources and types of
uncertainties within game formulations are discussed.
These uncertainties may arise from the system, player
types/actions, and payoffs.

UNCERTAINTIES IN CYBERSECURITY GAMES

Modeling Preliminaries

In this paper, the probabilistic modeling framework
for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory
and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross
(2004) or Clemen and Reilly (2001) for more detailed
descriptions.

 � Random Variable: A variable that can take different
values (with probabilities) as a result of a random
phenomenon. These variables may be discrete
(expressed as probability mass functions) or contin-
uous (expressed as probability density functions).

 � Marginal Probability: The probability of occurrence
of an event

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

 that does not account
for references, or depends on another event. For
example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there
are four 9’s among 52 cards, so 4/52 = 1/13).

 � Conditional Probability: The probability of occur-
rence of an event

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

 given another event

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

occurs,

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

. For example, the prob-
ability of drawing a card with diamond given
that it has number 9 is 1/4 (there are four
9’s and only one with diamond, so 1/4).

 � Joint Probability: The probability of occur-
rence of events

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

 and

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

,

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

. For
example, the probability of drawing a card
with both a diamond and a number 9 is 1/52
(there are only one card with diamond and
number 9 in a deck of cards, so 1/52).

 � Total Probability Theorem: Let us assume

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

 mutu-
ally exclusive events (events that cannot occur
simultaneously)

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

 with correspond-
ing probabilities and

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

; then
according to the Total Probability Theorem:

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

, where

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

 is
an event of interest and

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

 is the condi-
tional probability of event

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

 given event

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

 occurs.

 � Utility: A concept from economics that is utilized
as a measure of preference or satisfaction asso-
ciated with a good or service. In the context of
cybersecurity, it is associated with the payoffs that
players receive within a game-theoretic setting.

 � Utility Function: A mathematical function that
depends on how a player values the realization of
an operational state of the cyber system (in terms
of dollars or time) and the probability of occur-
rence of that state. Utility functions may also be
represented as probability distribution functions.

A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

 18 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Let us now consider a game with an initial cyber sys-
tem state Let us now consider a game with an initial cyber system state , attacker type which depends on ,

action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

, attacker type Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 which depends on Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

,
action tuple

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 of cyber system attacker
and defender that depends on both Let us now consider a game with an initial cyber system state , attacker type which depends on ,

action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 and Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 and
utility function (payoff) of player

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

which is a function of the cyber system, attacker
type, and player actions. Let us also assume that the
system initially at state Let us now consider a game with an initial cyber system state , attacker type which depends on ,

action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 transitions to state

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 due to the action tuple

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 of the players (i.e.,
cyber system attacker and defender). The overarch-
ing objective is to quantify uncertainty in attacker
payoff,

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 within a probabilistic
modeling framework. In the context of cyberse-
curity, system state Let us now consider a game with an initial cyber system state , attacker type which depends on ,

action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 may correspond to different
operational conditions of the cyber network before,
during, and after potential attacks. Some examples
of cyber system states may include: “Normal_opera-
tion”, “Httpd_attacked”, “Website_defaced”, and
“Network_shut_down” (Lye and Wing, 2005).
Attacker type Let us now consider a game with an initial cyber system state , attacker type which depends on ,

action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 refers to the capabilities in terms
of skills and resources available to a cyber system
attacker. Actions of the cyber system attacker and
defender may or may not cause the system to transi-
tion from one state of operation to another. Examples
of attacker actions may involve installing a sniffer,
cracking a server access password, or capturing data
whereas a defender may pursue actions including
installing sniffer detectors, removing virus and com-
promised accounts, or restoring websites.

Sources of Uncertainty

A non-cooperative cybersecurity game may involve the
defender not having complete information about the
system (due to partial observability) or the attacker
(due to multiple attack possibilities at a point in time).
These information gaps may include: (1) initial system
state, (2) type of attacker, (3) combinations of attacker
and defender actions, and (4) effects of these actions
on system state transitions. We adopt a probabilistic
framework to account for this lack of information
and model these parameters as discrete or continu-
ous random variables with appropriate uncertainty
distributions. Expert judgment and/or available data
from simulation experiments may be utilized to select
the type of random variables and statistical methods
to estimate these distributions and their parameters.
Further, these uncertainties may be propagated to the
quantities of interest (attacker payoff here) and its
effect on the outcome of the game may be analyzed.

Our conceptual uncertainty model begins by assign-
ing probability

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 for initial system state s at the
start of the game. Conditional probability

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 is
used to define attacker type Let us now consider a game with an initial cyber system state , attacker type which depends on ,

action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 conditioned on initial
system state Let us now consider a game with an initial cyber system state , attacker type which depends on ,

action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

, since skills and resources required
for an attack depend on initial system state. The
action tuple

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

, depends on attacker type and system
state — so we define probability of

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 as

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

.
State transition probability from system state Let us now consider a game with an initial cyber system state , attacker type which depends on ,

action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 to
state

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 is represented as

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

. Payoff utility
function of a player p depends on the initial system
state, attacker type, action tuple, and new system state
as

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

. In the following sections we
describe methodologies for modeling these probabili-
ties and propagating the uncertainty to player payoff
utility

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 in terms of both marginal and conditional
probabilities.

Uncertainty Representations

A comprehensive modeling approach to securing a
cyber system must account for the uncertain threats
and system operational behaviors under time-varying
conditions. Uncertainties in quantitative risk models
arise from inherent randomness in samples (aleatory)
or incomplete knowledge (epistemic) about fun-
damental phenomena (Paté-Cornell, 1996). A key
distinction between these two types of uncertainty is
that epistemic uncertainty can be reduced by gather-
ing more information, whereas aleatory uncertainty is
not reducible. These uncertainties may be present in
the modeling elements/variables or the model itself.
Thus, appropriate representation and propagation of
uncertainty within these models is essential for distin-
guishing between the knowns and unknowns. In this
paper, we describe the representation of uncertainties
in input variables and discuss the propagation of these
uncertainties to output variables of interest.

Uncertainty from randomness may be addressed
through the use of statistical probability distributions,
whereas incomplete knowledge may be represented
using mathematical intervals (Abrahamsson, 2002).
Figure 3 presents four uncertainty representations
(probability distribution, mathematical interval,
probability bounds, and probability box) for a
hypothetical variable, X, with uncertain values. A
probability distribution contains probabilities of
occurrence of outcomes from a random experiment;
mathematical interval is a set of real numbers between

A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

 19NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

lower and upper bounds; probability bound refers to a
probability distribution with uncertain parameter
values; and probability box represents limits of
uncertain percentile values (e.g. median is the 50th
percentile). The choice of uncertainty representation
depends on data and knowledge associated with the
variable of interest. Typically, probabilities may be
defined using a frequentist approach (i.e. as an estimate
of limiting relative frequency or ratio of the number of
successful trials to total number of trials) or a Bayesian
approach (i.e. as degree of belief with supporting
information from statistical data, physical models, and
subjective expert judgments).

Uncertainty Propagation Methods

Methods for propagating uncertainty to the output
variables within quantitative models depend on the
representations associated with the uncertain input
variables. Let us consider a thought experiment where
x represents a vector of k uncertain input variables; a
single input variable is denoted as X ; and the model
output y is a function of x: y = g (x). We outline
below three mathematical approaches for uncertainty
propagation based on probability distributions and

mathematical intervals. Please note that the list of
approaches below is not exhaustive and represents
initial methods identified by the authors for further
investigation within a cybersecurity setting. For
additional discussion, interested readers may refer to
Abrahamsson (2002), Swiler et al. (2009), Walker et al.
(2010), and Cox (2012).

1. Monte Carlo Sampling Analysis: Let us assume an input
random variable, X that has a cumulative distribu-
tion function

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 and an inverse
cumulative distribution function

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

. If

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 is strictly increasing and continuous, then

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

, where

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

, is a real number x such
that

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

. To generate a random sample
value for an input random variable, X, a random
number,

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

, is first generated between 0 and 1 (there
are several random sampling schemes available
in the literature, including simple random sam-
pling (where all samples have equal likelihood
of being chosen) and Latin hypercube sampling
(a stratified sampling scheme without replace-
ment) (Abrahamsson, 2002)). This sampled value,

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

, is then passed through the inverse cumulative
distribution function

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 to generate a random
sample value, x. Similarly, random sample values
for all k uncertain input variables may be gener-
ated resulting in a random sample vector, x. The
vector x when passed through the function

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds
or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propaga-
tion of interval uncertainty to output variable, y
when input variables, x, are represented as inter-
vals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and
is useful for conducting worst-case analysis. Let us
assume two uncertain input variables

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 and

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

,
represented as intervals

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 and

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 respec-
tively. For basic arithmetic operations with: g (x)
as

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

These basic arithmetic properties may be extended
further for evaluating more complex functions, g (x).

FIGURE 3:

UNCERTAINTY REPRESENTATIONS FOR
HYPOTHETICAL VARIABLE, X

A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

 20 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

3. Two-phase Monte Carlo Sampling Analysis:
In certain applications, stochastic and
knowledge-based forms of uncertainty in
the input variables may be separated and
analyzed further using a “two-phase”
sampling approach. This approach
involves two computational sampling
loops: outer and inner. The outer loop
contains input variables with knowl-
edge-based uncertainty and the inner
loop contains variables with stochastic
uncertainty. A single iteration in the
outer loop yields a sample (from the
outer loop variables) that is passed to
the inner loop, where several iterations
involving samples from the inner loop
variables are performed. Each sample
combination of outer and inner loop
variables when passed through a model
results in a realization of the output
variable of interest. Thus, several inner loop
iterations result in an output variable distribu-
tion addressing stochastic uncertainty. Finally,
multiple outer loop iterations lead to a collection
of output variable distributions whose disper-
sion addresses knowledge-based uncertainty.

 A graphical representation of this two-phase
sampling analysis is in Figure 4. The sampling
scheme may be based on multiple approaches,
including random sampling or Latin hypercube
sampling. For example, let us assume two uncer-
tain input variables

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 and

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

, where

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 has a
cumulative distribution function

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 and

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 is
represented as an interval

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

. Given a function

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 as

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 +

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

, the outer loop may comprise
of realizations from

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 and the inner loop may
contain realizations from

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

. Given a sample from
the interval [a,b], several samples (iterations) for

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 may be generated using its probability distribu-
tion via a Monte Carlo scheme. The vector x (with
several

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 sample values and the same

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 sample
value) when passed through the function

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

produces a probability distribution for the output
random variable, Y. With multiple samples from
the interval

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).

1. Monte Carlo Sampling Analysis: Let us assume an input random variable, X that has a cumulative
distribution function and an inverse cumulative distribution function .
If is strictly increasing and continuous, then , where , is a real number such
that . To generate a random sample value for an input random variable, X, a random
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in
the literature, including simple random sampling (where all samples have equal likelihood of being
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement)
(Abrahamsson, 2002)). This sampled value, r, is then passed through the inverse cumulative
distribution function to generate a random sample value, . Similarly, random sample values
for all k uncertain input variables may be generated resulting in a random sample vector, x. The
vector x when passed through the function g(x) produces a random output value of y. This Monte
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability
distribution for the output random variable Y.

2. Interval Analysis: This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals. The approach is computationally inexpensive,
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis. Let us
assume two uncertain input variables X1 and X2, represented as intervals and respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y =

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y = where 0 is not in . These basic arithmetic properties

 may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis: In certain applications, stochastic and knowledge-based
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase”
sampling approach. This approach involves two computational sampling loops: outer and inner. The
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains
variables with stochastic uncertainty. A single iteration in the outer loop yields a sample (from the
outer loop variables) that is passed to the inner loop, where several iterations involving samples from
the inner loop variables are performed. Each sample combination of outer and inner loop variables
when passed through a model results in a realization of the output variable of interest. Thus, several
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4. The sampling scheme
may be based on multiple approaches, including random sampling or Latin hypercube sampling. For
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative
distribution function and X2 is represented as an interval . Given a function g(x) as X1 +
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations
from X1. Given a sample from the interval , several samples (iterations) for X1 may be generated
using its probability distribution via a Monte Carlo scheme. The vector x (with several X1 sample
values and the same X2 sample value) when passed through the function g(x) produces a probability
distribution for the output random variable, Y. With multiple samples from the interval and
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the
dispersion of distributions reflects the knowledge-based uncertainty.

 and repetition of the sampling
process above, a collection of output probability
distributions are obtained. Each distribution for
output random variable, Y, represents the stochas-
tic uncertainty and the dispersion of distributions
reflects the knowledge-based uncertainty.

PROBABILISTIC FRAMEWORK FOR
PAYOFF UNCERTAINTY QUANTIFICATION

The payoff uncertainty quantification framework
presented here is an extension of the conceptual
representation within prior work (Chatterjee et al.,
2015) and is based on systems analysis, probability
theory, and utility theory. Within this framework,
uncertainty is modeled through marginal, joint, and
conditional probability distributions associated with
parameters of a stochastic cybersecurity game (see
Figure 5). There are five elements within this model-
ing framework: (1) probability of initial cyber system
state, (2) probability of attacker type, (3) probability
of player action choices, (4) probability of cyber
system state transitions over time, and (5) probability
of attacker payoff utility. An underlying assumption
here is that the cyber system is already compromised;
as a result issues related to sensing during an attack
is beyond the scope of this study. The probabilistic
intuition within this framework initiates with the
cyber system initially being in a particular state of
operation. Multiple types of attacks may be launched
to degrade system performance from that initial state.
Based on system state conditions and attacker types,
various player action choices may then be available. As
a result of these player actions, the cyber system may
or may not transition to other states of operation.

FIGURE 4:

VISUAL REPRESENTATION OF TWO-PHASE
MONTE CARLO SAMPLING ANALYSIS

A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

 21NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Further, depending on the final state of operation,
attacker payoff utilities may be assessed using prob-
ability distributions. This conditional probabilistic
reasoning helps organize the dependencies among the
system, attacker types, and player actions and enables
the application of total probability theorem for payoff
uncertainty propagation.

Mathematically, let

Figure 5. Payoff Uncertainty Quantification Framework (adapted from Chatterjee et al., 2015)

Mathematically, let be the probability of the system being in initial state , where is a finite
set of all possible system states. Let be the probability of attacker type given initial system
state . Then) is the probability of players taking actions , conditioned on the attacker type
and the system state . Let be the transition probability from system state to state given
action tuple and attacker type . Let us also assume that these conditional and marginal distributions
are available from domain experts or simulation experiments; the next step involves propagating these
uncertainties into the attacker payoff utility and computing its probability distribution. The final outputs
of interest are marginal and conditional probabilities of attacker payoff utility, .

Using total probability theorem, the discrete version of the marginal attacker payoff probability is:

In this case, all the dependent variables in the conditional distributions get integrated out. This quantity
provides distributional information about overall attacker payoff utility, but does not reveal specific
details such as the probability of attacker payoff utility with an assumed initial system state, or against
an assumed attacker type, . To reveal these finer resolution details, we retain conditional probabilities,
given specific quantities. For example, , is the probability of attacker payoff assuming an
initial system state and is computed as:

Similarly, is the probability of attacker payoff given an assumed attacker type and initial
system state and is computed as:

Figure 6 presents notional attacker payoff marginal and conditional probability distributions. In this
figure, marginal probability P , represents the overall uncertainty in attacker payoff. The
conditional probability, , represents payoff uncertainty for an assumed initial system state.
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity
game settings and are important for identifying optimal defender strategies needed for resilient design of
cyber systems.

 be the probability of the
system being in initial state

each, or if play of the game continued on for an infinite number of rounds, then it would be
classified as an infinite game.

• It is a non-cooperative game since the players cannot speak to one another (and we assume they
have not planned their choices before being accused of the crime) and since they cannot form a
coalition against another party; if communication were allowed then such a game would be a
cooperative game.

• It is a static game, since each player gets one chance to confess before play is over; if the game
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before
play is over; if, however, once the first player confessed, the second one was notified before
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero;
if for every play one player lost in value what the other gained (e.g. monetary settlements), then
this would become a zero-sum game.

• It is a game with imperfect information since there is no past; if, however, the players had been in
this situation in the past for a different crime and the players’ past decisions influenced present
choices, then this would become a game with perfect information.

• It is a game with complete information since the players know each other’s payoffs; if the players
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid
to serve a longer sentence) which is further unknown to the opposing player, then we would have
a game with incomplete information.

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar
scenarios; if, for example, one player had a previous record and would receive more time in jail
upon confessing, then the game would become an asymmetric game.

To recap, we have the following high-level concepts categorized with some notation and key notes:
• players (,)

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’

• actions (for)
o player 's action is an element , possibly infinitely many
o a play is a tuple in the set

• payoff functions (for)
o each player places a value on each play
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect)
o complete information means each player knows all others’ payoff values for each play

(know value of each possible outcome)
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes)
• play (sequential/simultaneous; static/dynamic)

o simultaneous means no information on play before choosing one’s own
o static means only one act per player

<B head> Game Implications for Cyber Systems
In cybersecurity, we typically model a non-cooperative game in which players act and where system state
transitions reflect changes in the network’s operational behavior. To this end, we augment the game tuple
to include the finite—albeit generally very large—system state set , and the transition function

 taking a state and a play , and transitioning it to the next state . The , where S is a finite
set of all possible system states. Let

Figure 5. Payoff Uncertainty Quantification Framework (adapted from Chatterjee et al., 2015)

Mathematically, let be the probability of the system being in initial state , where is a finite
set of all possible system states. Let be the probability of attacker type given initial system
state . Then) is the probability of players taking actions , conditioned on the attacker type
and the system state . Let be the transition probability from system state to state given
action tuple and attacker type . Let us also assume that these conditional and marginal distributions
are available from domain experts or simulation experiments; the next step involves propagating these
uncertainties into the attacker payoff utility and computing its probability distribution. The final outputs
of interest are marginal and conditional probabilities of attacker payoff utility, .

Using total probability theorem, the discrete version of the marginal attacker payoff probability is:

In this case, all the dependent variables in the conditional distributions get integrated out. This quantity
provides distributional information about overall attacker payoff utility, but does not reveal specific
details such as the probability of attacker payoff utility with an assumed initial system state, or against
an assumed attacker type, . To reveal these finer resolution details, we retain conditional probabilities,
given specific quantities. For example, , is the probability of attacker payoff assuming an
initial system state and is computed as:

Similarly, is the probability of attacker payoff given an assumed attacker type and initial
system state and is computed as:

Figure 6 presents notional attacker payoff marginal and conditional probability distributions. In this
figure, marginal probability P , represents the overall uncertainty in attacker payoff. The
conditional probability, , represents payoff uncertainty for an assumed initial system state.
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity
game settings and are important for identifying optimal defender strategies needed for resilient design of
cyber systems.

 be the
probability of attacker type Let us now consider a game with an initial cyber system state , attacker type which depends on ,

action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 given initial system
state

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

. Then

Figure 5. Payoff Uncertainty Quantification Framework (adapted from Chatterjee et al., 2015)

Mathematically, let be the probability of the system being in initial state , where is a finite
set of all possible system states. Let be the probability of attacker type given initial system
state . Then) is the probability of players taking actions , conditioned on the attacker type
and the system state . Let be the transition probability from system state to state given
action tuple and attacker type . Let us also assume that these conditional and marginal distributions
are available from domain experts or simulation experiments; the next step involves propagating these
uncertainties into the attacker payoff utility and computing its probability distribution. The final outputs
of interest are marginal and conditional probabilities of attacker payoff utility, .

Using total probability theorem, the discrete version of the marginal attacker payoff probability is:

In this case, all the dependent variables in the conditional distributions get integrated out. This quantity
provides distributional information about overall attacker payoff utility, but does not reveal specific
details such as the probability of attacker payoff utility with an assumed initial system state, or against
an assumed attacker type, . To reveal these finer resolution details, we retain conditional probabilities,
given specific quantities. For example, , is the probability of attacker payoff assuming an
initial system state and is computed as:

Similarly, is the probability of attacker payoff given an assumed attacker type and initial
system state and is computed as:

Figure 6 presents notional attacker payoff marginal and conditional probability distributions. In this
figure, marginal probability P , represents the overall uncertainty in attacker payoff. The
conditional probability, , represents payoff uncertainty for an assumed initial system state.
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity
game settings and are important for identifying optimal defender strategies needed for resilient design of
cyber systems.

 is the probability of players
taking actions

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

, conditioned on the attacker type
Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 and the system state

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

. Let

Figure 5. Payoff Uncertainty Quantification Framework (adapted from Chatterjee et al., 2015)

Mathematically, let be the probability of the system being in initial state , where is a finite
set of all possible system states. Let be the probability of attacker type given initial system
state . Then) is the probability of players taking actions , conditioned on the attacker type
and the system state . Let be the transition probability from system state to state given
action tuple and attacker type . Let us also assume that these conditional and marginal distributions
are available from domain experts or simulation experiments; the next step involves propagating these
uncertainties into the attacker payoff utility and computing its probability distribution. The final outputs
of interest are marginal and conditional probabilities of attacker payoff utility, .

Using total probability theorem, the discrete version of the marginal attacker payoff probability is:

In this case, all the dependent variables in the conditional distributions get integrated out. This quantity
provides distributional information about overall attacker payoff utility, but does not reveal specific
details such as the probability of attacker payoff utility with an assumed initial system state, or against
an assumed attacker type, . To reveal these finer resolution details, we retain conditional probabilities,
given specific quantities. For example, , is the probability of attacker payoff assuming an
initial system state and is computed as:

Similarly, is the probability of attacker payoff given an assumed attacker type and initial
system state and is computed as:

Figure 6 presents notional attacker payoff marginal and conditional probability distributions. In this
figure, marginal probability P , represents the overall uncertainty in attacker payoff. The
conditional probability, , represents payoff uncertainty for an assumed initial system state.
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity
game settings and are important for identifying optimal defender strategies needed for resilient design of
cyber systems.

 be the
transition probability from system state

available actions for each player are limited to only those that make sense when the system is in the
state (e.g. a network administration will not shut down a file server when it is running normally, but he
or she may do so when an adversary is observed stealing information from it); thus we distinguish these
subsets with a superscript, . Furthermore, any play may probabilistically transition the state from
to many other states . We define this probabilistic function as , and typically rewrite
it as , meaning is the conditional probability function that yields the likelihood of sending
the system from state to whenever play is made.

In the following section, various sources and types of uncertainties within game formulations are
discussed. These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games

<B head> Modeling Preliminaries
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs
contains basic concepts from probability theory and utility theory. A few key concepts are briefly
described below. Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more
detailed descriptions.

• Random Variable: A variable that can take different values (with probabilities) as a result of a
random phenomenon. These variables may be discrete (expressed as probability mass functions)
or continuous (expressed as probability density functions).

• Marginal Probability: The probability of occurrence of an event , that does not account
for, reference, or depend on another event. For example, the probability of drawing a card with
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).

• Conditional Probability: The probability of occurrence of an event given another event
occurs, . For example, the probability of drawing a card with diamond given that it has
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).

• Joint Probability: The probability of occurrence of events and , . For example,
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one
card with diamond and number 9 in a deck of cards, so 1/52).

• Total Probability Theorem: Let us assume n mutually exclusive events (events that cannot occur
simultaneously) ,…, with corresponding probabilities and ; then according
to the Total Probability Theorem: , where is an event of
interest and is the conditional probability of event given event occurs.

• Utility: A concept from economics that is utilized as a measure of preference or satisfaction
associated with a good or service. In the context of cybersecurity, it is associated with the
payoffs that players receive within a game-theoretic setting.

• Utility Function: A mathematical function that depends on how a player values the realization of
an operational state of the cyber system (in terms of dollars or time) and the probability of
occurrence of that state. Utility functions may also be represented as probability distribution
functions.

 to state

Figure 5. Payoff Uncertainty Quantification Framework (adapted from Chatterjee et al., 2015)

Mathematically, let be the probability of the system being in initial state , where is a finite
set of all possible system states. Let be the probability of attacker type given initial system
state . Then) is the probability of players taking actions , conditioned on the attacker type
and the system state . Let be the transition probability from system state to state given
action tuple and attacker type . Let us also assume that these conditional and marginal distributions
are available from domain experts or simulation experiments; the next step involves propagating these
uncertainties into the attacker payoff utility and computing its probability distribution. The final outputs
of interest are marginal and conditional probabilities of attacker payoff utility, .

Using total probability theorem, the discrete version of the marginal attacker payoff probability is:

In this case, all the dependent variables in the conditional distributions get integrated out. This quantity
provides distributional information about overall attacker payoff utility, but does not reveal specific
details such as the probability of attacker payoff utility with an assumed initial system state, or against
an assumed attacker type, . To reveal these finer resolution details, we retain conditional probabilities,
given specific quantities. For example, , is the probability of attacker payoff assuming an
initial system state and is computed as:

Similarly, is the probability of attacker payoff given an assumed attacker type and initial
system state and is computed as:

Figure 6 presents notional attacker payoff marginal and conditional probability distributions. In this
figure, marginal probability P , represents the overall uncertainty in attacker payoff. The
conditional probability, , represents payoff uncertainty for an assumed initial system state.
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity
game settings and are important for identifying optimal defender strategies needed for resilient design of
cyber systems.

given action tuple

Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

 and attacker type Let us now consider a game with an initial cyber system state , attacker type which depends on ,
action tuple) of cyber system attacker and defender that depends on both and and utility
function (payoff) of player , which is a function of the cyber system, attacker type, and
player actions. Let us also assume that the system initially at state transitions to state due to
the action tuple of the players (i.e., cyber system attacker and defender). The overarching objective is
to quantify uncertainty in attacker payoff, within a probabilistic modeling framework. In
the context of cybersecurity, system state may correspond to different operational conditions of the
cyber network before, during, and after potential attacks. Some examples of cyber system states may
include: “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye
and Wing, 2005). Attacker type refers to the capabilities in terms of skills and resources available to a
cyber system attacker. Actions of the cyber system attacker and defender may or may not cause the
system to transition from one state of operation to another. Examples of attacker actions may involve
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring
websites.

<B head> Sources of Uncertainty
A non-cooperative cybersecurity game may involve the defender not having complete information about
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in
time). These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a
probabilistic framework to account for this lack of information and model these parameters as discrete or
continuous random variables with appropriate uncertainty distributions. Expert judgment and/or available
data from simulation experiments may be utilized to select the type of random variables and statistical
methods to estimate these distributions and their parameters. Further, these uncertainties may be
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game
may be analyzed.

Our conceptual uncertainty model begins by assigning probability for initial system state at the
start of the game. Conditional probability is used to define attacker type conditioned on initial
system state , since skills and resources required for an attack depend on initial system state. The action
tuple , depends on attacker type and system state—so we define probability of as . State
transition probability from system state to state is represented as . Payoff utility
function of a player depends on the initial system state, attacker type, action tuple, and new system state
as . In the following sections we describe methodologies for modeling these
probabilities and propagating the uncertainty to player payoff utility in terms of both marginal and
conditional probabilities.

<B head> Uncertainty Representations
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats
and system operational behaviors under time-varying conditions. Uncertainties in quantitative risk
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about
fundamental phenomena (Paté-Cornell, 1996). A key distinction between these two types of uncertainty
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty
is not reducible. These uncertainties may be present in the modeling elements/variables or the model
itself. Thus, appropriate representation and propagation of uncertainty within these models is essential
for distinguishing between the knowns and unknowns. In this paper, we describe the representation of
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of
interest.

. Let us also
assume that these conditional and marginal distribu-
tions are available from domain experts or simulation
experiments; the next step involves propagating these
uncertainties into the attacker payoff utility and com-
puting its probability distribution. The final outputs
of interest are marginal and conditional probabilities
of attacker payoff utility,

Figure 5. Payoff Uncertainty Quantification Framework (adapted from Chatterjee et al., 2015)

Mathematically, let be the probability of the system being in initial state , where is a finite
set of all possible system states. Let be the probability of attacker type given initial system
state . Then) is the probability of players taking actions , conditioned on the attacker type
and the system state . Let be the transition probability from system state to state given
action tuple and attacker type . Let us also assume that these conditional and marginal distributions
are available from domain experts or simulation experiments; the next step involves propagating these
uncertainties into the attacker payoff utility and computing its probability distribution. The final outputs
of interest are marginal and conditional probabilities of attacker payoff utility, .

Using total probability theorem, the discrete version of the marginal attacker payoff probability is:

In this case, all the dependent variables in the conditional distributions get integrated out. This quantity
provides distributional information about overall attacker payoff utility, but does not reveal specific
details such as the probability of attacker payoff utility with an assumed initial system state, or against
an assumed attacker type, . To reveal these finer resolution details, we retain conditional probabilities,
given specific quantities. For example, , is the probability of attacker payoff assuming an
initial system state and is computed as:

Similarly, is the probability of attacker payoff given an assumed attacker type and initial
system state and is computed as:

Figure 6 presents notional attacker payoff marginal and conditional probability distributions. In this
figure, marginal probability P , represents the overall uncertainty in attacker payoff. The
conditional probability, , represents payoff uncertainty for an assumed initial system state.
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity
game settings and are important for identifying optimal defender strategies needed for resilient design of
cyber systems.

.

Using total probability theorem, the discrete version
of the marginal attacker payoff probability is:

In this case, all the dependent variables in the
conditional distributions get integrated out. This
quantity provides distributional information about
overall attacker payoff utility, but does not reveal
specific details such as the probability of attacker
payoff utility with an assumed initial system state,

Figure 5. Payoff Uncertainty Quantification Framework (adapted from Chatterjee et al., 2015)

Mathematically, let be the probability of the system being in initial state , where is a finite
set of all possible system states. Let be the probability of attacker type given initial system
state . Then) is the probability of players taking actions , conditioned on the attacker type
and the system state . Let be the transition probability from system state to state given
action tuple and attacker type . Let us also assume that these conditional and marginal distributions
are available from domain experts or simulation experiments; the next step involves propagating these
uncertainties into the attacker payoff utility and computing its probability distribution. The final outputs
of interest are marginal and conditional probabilities of attacker payoff utility, .

Using total probability theorem, the discrete version of the marginal attacker payoff probability is:

In this case, all the dependent variables in the conditional distributions get integrated out. This quantity
provides distributional information about overall attacker payoff utility, but does not reveal specific
details such as the probability of attacker payoff utility with an assumed initial system state, or against
an assumed attacker type, . To reveal these finer resolution details, we retain conditional probabilities,
given specific quantities. For example, , is the probability of attacker payoff assuming an
initial system state and is computed as:

Similarly, is the probability of attacker payoff given an assumed attacker type and initial
system state and is computed as:

Figure 6 presents notional attacker payoff marginal and conditional probability distributions. In this
figure, marginal probability P , represents the overall uncertainty in attacker payoff. The
conditional probability, , represents payoff uncertainty for an assumed initial system state.
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity
game settings and are important for identifying optimal defender strategies needed for resilient design of
cyber systems.

 or against an assumed attacker type,

Figure 5. Payoff Uncertainty Quantification Framework (adapted from Chatterjee et al., 2015)

Mathematically, let be the probability of the system being in initial state , where is a finite
set of all possible system states. Let be the probability of attacker type given initial system
state . Then) is the probability of players taking actions , conditioned on the attacker type
and the system state . Let be the transition probability from system state to state given
action tuple and attacker type . Let us also assume that these conditional and marginal distributions
are available from domain experts or simulation experiments; the next step involves propagating these
uncertainties into the attacker payoff utility and computing its probability distribution. The final outputs
of interest are marginal and conditional probabilities of attacker payoff utility, .

Using total probability theorem, the discrete version of the marginal attacker payoff probability is:

In this case, all the dependent variables in the conditional distributions get integrated out. This quantity
provides distributional information about overall attacker payoff utility, but does not reveal specific
details such as the probability of attacker payoff utility with an assumed initial system state, or against
an assumed attacker type, . To reveal these finer resolution details, we retain conditional probabilities,
given specific quantities. For example, , is the probability of attacker payoff assuming an
initial system state and is computed as:

Similarly, is the probability of attacker payoff given an assumed attacker type and initial
system state and is computed as:

Figure 6 presents notional attacker payoff marginal and conditional probability distributions. In this
figure, marginal probability P , represents the overall uncertainty in attacker payoff. The
conditional probability, , represents payoff uncertainty for an assumed initial system state.
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity
game settings and are important for identifying optimal defender strategies needed for resilient design of
cyber systems.

. To reveal

these finer resolution details, we retain conditional
probabilities, given specific quantities. For example,

Figure 5. Payoff Uncertainty Quantification Framework (adapted from Chatterjee et al., 2015)

Mathematically, let be the probability of the system being in initial state , where is a finite
set of all possible system states. Let be the probability of attacker type given initial system
state . Then) is the probability of players taking actions , conditioned on the attacker type
and the system state . Let be the transition probability from system state to state given
action tuple and attacker type . Let us also assume that these conditional and marginal distributions
are available from domain experts or simulation experiments; the next step involves propagating these
uncertainties into the attacker payoff utility and computing its probability distribution. The final outputs
of interest are marginal and conditional probabilities of attacker payoff utility, .

Using total probability theorem, the discrete version of the marginal attacker payoff probability is:

In this case, all the dependent variables in the conditional distributions get integrated out. This quantity
provides distributional information about overall attacker payoff utility, but does not reveal specific
details such as the probability of attacker payoff utility with an assumed initial system state, or against
an assumed attacker type, . To reveal these finer resolution details, we retain conditional probabilities,
given specific quantities. For example, , is the probability of attacker payoff assuming an
initial system state and is computed as:

Similarly, is the probability of attacker payoff given an assumed attacker type and initial
system state and is computed as:

Figure 6 presents notional attacker payoff marginal and conditional probability distributions. In this
figure, marginal probability P , represents the overall uncertainty in attacker payoff. The
conditional probability, , represents payoff uncertainty for an assumed initial system state.
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity
game settings and are important for identifying optimal defender strategies needed for resilient design of
cyber systems.

, is the probability of attacker payoff
assuming an initial system state and is computed as:

Similarly,

Figure 5. Payoff Uncertainty Quantification Framework (adapted from Chatterjee et al., 2015)

Mathematically, let be the probability of the system being in initial state , where is a finite
set of all possible system states. Let be the probability of attacker type given initial system
state . Then) is the probability of players taking actions , conditioned on the attacker type
and the system state . Let be the transition probability from system state to state given
action tuple and attacker type . Let us also assume that these conditional and marginal distributions
are available from domain experts or simulation experiments; the next step involves propagating these
uncertainties into the attacker payoff utility and computing its probability distribution. The final outputs
of interest are marginal and conditional probabilities of attacker payoff utility, .

Using total probability theorem, the discrete version of the marginal attacker payoff probability is:

In this case, all the dependent variables in the conditional distributions get integrated out. This quantity
provides distributional information about overall attacker payoff utility, but does not reveal specific
details such as the probability of attacker payoff utility with an assumed initial system state, or against
an assumed attacker type, . To reveal these finer resolution details, we retain conditional probabilities,
given specific quantities. For example, , is the probability of attacker payoff assuming an
initial system state and is computed as:

Similarly, is the probability of attacker payoff given an assumed attacker type and initial
system state and is computed as:

Figure 6 presents notional attacker payoff marginal and conditional probability distributions. In this
figure, marginal probability P , represents the overall uncertainty in attacker payoff. The
conditional probability, , represents payoff uncertainty for an assumed initial system state.
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity
game settings and are important for identifying optimal defender strategies needed for resilient design of
cyber systems.

 is the probability of attacker
payoff given an assumed attacker type and initial
system state and is computed as:

Figure 6 presents notional attacker payoff marginal
and conditional probability distributions. In this
figure, marginal probability

Figure 5. Payoff Uncertainty Quantification Framework (adapted from Chatterjee et al., 2015)

Mathematically, let be the probability of the system being in initial state , where is a finite
set of all possible system states. Let be the probability of attacker type given initial system
state . Then) is the probability of players taking actions , conditioned on the attacker type
and the system state . Let be the transition probability from system state to state given
action tuple and attacker type . Let us also assume that these conditional and marginal distributions
are available from domain experts or simulation experiments; the next step involves propagating these
uncertainties into the attacker payoff utility and computing its probability distribution. The final outputs
of interest are marginal and conditional probabilities of attacker payoff utility, .

Using total probability theorem, the discrete version of the marginal attacker payoff probability is:

In this case, all the dependent variables in the conditional distributions get integrated out. This quantity
provides distributional information about overall attacker payoff utility, but does not reveal specific
details such as the probability of attacker payoff utility with an assumed initial system state, or against
an assumed attacker type, . To reveal these finer resolution details, we retain conditional probabilities,
given specific quantities. For example, , is the probability of attacker payoff assuming an
initial system state and is computed as:

Similarly, is the probability of attacker payoff given an assumed attacker type and initial
system state and is computed as:

Figure 6 presents notional attacker payoff marginal and conditional probability distributions. In this
figure, marginal probability P , represents the overall uncertainty in attacker payoff. The
conditional probability, , represents payoff uncertainty for an assumed initial system state.
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity
game settings and are important for identifying optimal defender strategies needed for resilient design of
cyber systems.

, represents the
overall uncertainty in attacker payoff. The conditional
probability,

Figure 5. Payoff Uncertainty Quantification Framework (adapted from Chatterjee et al., 2015)

Mathematically, let be the probability of the system being in initial state , where is a finite
set of all possible system states. Let be the probability of attacker type given initial system
state . Then) is the probability of players taking actions , conditioned on the attacker type
and the system state . Let be the transition probability from system state to state given
action tuple and attacker type . Let us also assume that these conditional and marginal distributions
are available from domain experts or simulation experiments; the next step involves propagating these
uncertainties into the attacker payoff utility and computing its probability distribution. The final outputs
of interest are marginal and conditional probabilities of attacker payoff utility, .

Using total probability theorem, the discrete version of the marginal attacker payoff probability is:

In this case, all the dependent variables in the conditional distributions get integrated out. This quantity
provides distributional information about overall attacker payoff utility, but does not reveal specific
details such as the probability of attacker payoff utility with an assumed initial system state, or against
an assumed attacker type, . To reveal these finer resolution details, we retain conditional probabilities,
given specific quantities. For example, , is the probability of attacker payoff assuming an
initial system state and is computed as:

Similarly, is the probability of attacker payoff given an assumed attacker type and initial
system state and is computed as:

Figure 6 presents notional attacker payoff marginal and conditional probability distributions. In this
figure, marginal probability P , represents the overall uncertainty in attacker payoff. The
conditional probability, , represents payoff uncertainty for an assumed initial system state.
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity
game settings and are important for identifying optimal defender strategies needed for resilient design of
cyber systems.

, represents payoff uncertainty
for an assumed initial system state. Different versions Equations for NCIJ Paper – 12/4/15

𝑃𝑃𝑃𝑃 𝑢𝑢!! = 𝑃𝑃𝑃𝑃
!!!!

𝑢𝑢!! 𝑠𝑠!!, 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝑠𝑠!! 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!
 ∙ 𝑃𝑃𝑃𝑃 𝑎𝑎! 𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝛼𝛼! 𝑠𝑠!
 ∙ 𝑃𝑃𝑃𝑃(𝑠𝑠!)

𝑃𝑃𝑃𝑃 𝑢𝑢!!|𝑠𝑠! = 𝑃𝑃𝑃𝑃

!!!
𝑢𝑢!! 𝑠𝑠!!, 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝑠𝑠!! 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!
 ∙ 𝑃𝑃𝑃𝑃 𝑎𝑎! 𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝛼𝛼! 𝑠𝑠!

𝑃𝑃𝑃𝑃 𝑢𝑢!!|𝛼𝛼! , 𝑠𝑠! = 𝑃𝑃𝑃𝑃
!!

𝑢𝑢!! 𝑠𝑠!!, 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝑠𝑠!! 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!
 ∙ 𝑃𝑃𝑃𝑃 𝑎𝑎! 𝛼𝛼! , 𝑠𝑠!

Equations for NCIJ Paper – 12/4/15

𝑃𝑃𝑃𝑃 𝑢𝑢!! = 𝑃𝑃𝑃𝑃
!!!!

𝑢𝑢!! 𝑠𝑠!!, 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝑠𝑠!! 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!
 ∙ 𝑃𝑃𝑃𝑃 𝑎𝑎! 𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝛼𝛼! 𝑠𝑠!
 ∙ 𝑃𝑃𝑃𝑃(𝑠𝑠!)

𝑃𝑃𝑃𝑃 𝑢𝑢!!|𝑠𝑠! = 𝑃𝑃𝑃𝑃

!!!
𝑢𝑢!! 𝑠𝑠!!, 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝑠𝑠!! 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!
 ∙ 𝑃𝑃𝑃𝑃 𝑎𝑎! 𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝛼𝛼! 𝑠𝑠!

𝑃𝑃𝑃𝑃 𝑢𝑢!!|𝛼𝛼! , 𝑠𝑠! = 𝑃𝑃𝑃𝑃
!!

𝑢𝑢!! 𝑠𝑠!!, 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝑠𝑠!! 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!
 ∙ 𝑃𝑃𝑃𝑃 𝑎𝑎! 𝛼𝛼! , 𝑠𝑠!

Equations for NCIJ Paper – 12/4/15

𝑃𝑃𝑃𝑃 𝑢𝑢!! = 𝑃𝑃𝑃𝑃
!!!!

𝑢𝑢!! 𝑠𝑠!!, 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝑠𝑠!! 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!
 ∙ 𝑃𝑃𝑃𝑃 𝑎𝑎! 𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝛼𝛼! 𝑠𝑠!
 ∙ 𝑃𝑃𝑃𝑃(𝑠𝑠!)

𝑃𝑃𝑃𝑃 𝑢𝑢!!|𝑠𝑠! = 𝑃𝑃𝑃𝑃

!!!
𝑢𝑢!! 𝑠𝑠!!, 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝑠𝑠!! 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!
 ∙ 𝑃𝑃𝑃𝑃 𝑎𝑎! 𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝛼𝛼! 𝑠𝑠!

𝑃𝑃𝑃𝑃 𝑢𝑢!!|𝛼𝛼! , 𝑠𝑠! = 𝑃𝑃𝑃𝑃
!!

𝑢𝑢!! 𝑠𝑠!!, 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!

 ∙ 𝑃𝑃𝑃𝑃 𝑠𝑠!! 𝑎𝑎! ,𝛼𝛼! , 𝑠𝑠!
 ∙ 𝑃𝑃𝑃𝑃 𝑎𝑎! 𝛼𝛼! , 𝑠𝑠!

FIGURE 5: PAYOFF UNCERTAINTY QUANTIFICATION FRAMEWORK

(ADAPTED FROM CHATTERJEE ET AL., 2015)

FIGURE 6:
NOTIONAL CYBER ATTACKER

PAYOFF DISTRIBUTIONS

A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

 22 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

of attacker payoff probability distributions are essen-
tial inputs within cybersecurity game settings and are
important for identifying optimal defender strategies
needed for resilient design of cyber systems.

CONCLUSION

Application of game theory-based mathematical
modeling approaches (involving strategic decision-
makers) for cybersecurity is a promising area of
research inquiry. This paper contributes to the
state-of-the-art by highlighting the importance of
quantifying several sources and types of uncer-
tainty impacting cyber attacker payoffs within this
problem space. These uncertainties arise due to
randomness or lack of knowledge associated with
cyber system operational behaviors, attacker types,
and attack and defense actions over time. Different
classes of stochastic game models are discussed
and approaches for representing and propagating
uncertainty are identified. A conditional probabi-
listic reasoning approach is adopted to organize
the dependencies between a cyber system’s state,
attacker type, player actions, and state transitions.
A theoretical, probabilistic modeling framework for
quantifying attacker payoff uncertainty is described
and mathematical formulations of marginal and
conditional probability distributions are presented.
Implementation of our mathematical formulations in
real-world systems may yield valuable payoff uncer-
tainty inputs to large-scale cybersecurity games.

A detailed investigation of uncertainty quantification
within cybersecurity games could lead to advances in
proactive security resource allocation strategies for
designing resilient cyber systems. A goal of this paper
was also to increase awareness about this problem
domain among practitioners and researchers, and
encourage further advancements in this area.

ACKNOWLEDGMENTS

This research study was supported by the Asymmetric
Resilient Cybersecurity (ARC) initiative at the Pacific
Northwest National Laboratory (PNNL). PNNL
is a multi-program national laboratory operated by
Battelle Memorial Institute for the U.S. Department
of Energy under DE-AC06-76RLO 1830.

REFERENCES CITED
Abrahamsson, M. (2002). Uncertainty in quantitative risk analysis —
characterization and methods of treatment. Report 1024, Department
of Fire Safety Engineering, Lund University, Sweden, pp. 88.

Chatterjee, S., Halappanavar, M., Tipireddy, R., Oster, M.R., and
Saha, S. (2015). Quantifying mixed uncertainties in cyber
attacker payoffs. Proceedings of IEEE international symposium
on technologies for homeland security (HST 2015), Waltham,
Massachusetts, 1– 6, doi:10.1109/THS.2015.7225287.

Clemen, R.T., and Reilly T. (2001). Making hard decisions with
DecisionTools, 2nd Edition. South-Western Cengage Learning, Mason, Ohio.

Cox, L.A. (2012). Confronting deep uncertainties in risk
analysis. Risk Analysis, 32(10), 1607 – 1629.

Liang, X., and Xiao, Y. (2013). Game theory for network security.
IEEE Communications Surveys and Tutorials, 15(1), 472 – 486.

Lye, K.W., and Wing, J.M. (2005). Game strategies in network security.
International Journal of Information Security, 4(1), 71 – 86.

Paté-Cornell, M.E. (1996). Uncertainties in risk analysis: Six levels of
treatment. Reliability Engineering and System Safety, 54, 95 – 111.

Ross, S. (2004). A first course in probability, 6th Edition.
Pearson Education, Delhi, India.

Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V., and Wu, Q. (2010).
A survey of game theory as applied to network security. Proceedings
of 43rd Hawaii international conference on system sciences — IEEE
Computer Society, Kauai, Hawaii, 1-10, doi:10.1109/HICSS.2010.35.

Stanford Encyclopedia of Philosophy. (2014). Prisoner’s Dilemma.
Center for the Study of Language and Information, Stanford University.
Retrieved from http://plato.stanford.edu/entries/prisoner-dilemma/.

Swiler, L.P., Paez, T.L., and Mayes, R.L. (2009). Epistemic
uncertainty quantification tutorial. Proceedings of the IMAC-XXVII:
Conference & exposition on structural dynamics, 1–17.

U.S. Office of Personnel Management. (2015). Cybersecurity resource
center. Retrieved from https://www.opm.gov/cybersecurity.

Walker, W.E., Marchau, V.A.W.J., and Swanson, D. (2010). Addressing
deep uncertainty using adaptive policies: Introduction to section 2.
Technological Forecasting and Social Change, 77(6), 917 – 923.

A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

 23NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

AUTHORS

Samrat Chatterjee (samrat.chatterjee@pnnl.gov) is an
operations research scientist in the National Security
Directorate at Pacific Northwest National Laboratory.
His research focuses on assessing and managing risks
to critical cyber and physical infrastructure systems
from multiple hazards utilizing interdisciplinary
modeling and simulation methods. He has published
and presented over 30 contributions in refereed
journals and conferences. Dr. Chatterjee conducted
postdoctoral research on infrastructure risk and deci-
sion analysis at the U.S. Homeland Security National
Center of Excellence for Risk and Economic Analysis
of Terrorism Events (CREATE) at the University of
Southern California and holds a doctorate in civil
engineering with focus on systems risk analysis from
Vanderbilt University.

Ramakrishna Tipireddy (Ramakrishna.Tipireddy@pnnl.gov) is
a postdoctoral research assistant in the Physical and
Computational Sciences Directorate at the Pacific
Northwest National Laboratory. His research interests
include uncertainty quantification, computational
mechanics, and development of reduced order models
for complex stochastic systems. Dr. Tipireddy received
his doctorate in civil engineering from University of
Southern California.

Matthew Oster (Matthew.Oster@pnnl.gov) is an opera-
tions research scientist with the National Security
Directorate at Pacific Northwest National Laboratory
(PNNL). His research areas and interests broadly
include operational modeling and simulation, mathe-
matical optimization algorithms, and decision support
software development. Dr. Oster holds a doctor-
ate in Operations Research from Rutgers, the State
University of New Jersey, and a Bachelor of Science
in mathematics.

Mahantesh Halappanavar (hala@pnnl.gov) is a staff
scientist in the Physical and Computational Sciences
Directorate at the Pacific Northwest National
Laboratory. His research interests include the inter-
play of algorithm design, architectural features, and
input characteristics targeting massively multithreaded
architectures such as the Cray XMT and emerging
multicore and many-core platforms. Dr. Halappanavar
received a doctorate in computer science from Old
Dominion University.

Creating New Private-Public Partnerships in CybersecurityA Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

 24 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Creating New Private-Public Partnerships in
Cybersecurity

Chris Golden

INTRODUCTION

With the threats posed by malicious actors in cyber-
space growing and evolving at an increasing rate,
individuals, companies, and governments have a
duty to take actions to mitigate these threats to
our interconnected systems. The vulnerabilities are
enormous, with almost all critical infrastructures in
America and the communications nodes that connect
them accessible via the Internet. The U.S. government
is potentially not the primary target, but rather the
critical infrastructure owned and operated by private
companies which comprises over 70% (Treasury, 2013)

of the nation’s critical infrastructure. Threat actors
in cyberspace are targeting both private and public
networks simultaneously. This is due to the fact that
both business traffic and government traffic flow over
the same commercially owned networks. Additionally,
with government procurement buying many of the
same systems, software, and other information tech-
nology appliances, the threat actors have no need to
invest in breaking into two separate types of computer
systems (Iasiello, 2012). Therefore, any response to
critical infrastructure cybersecurity demands a coher-
ent, disciplined and nation-wide effort.

Private companies do not have the resources or man-
power to tackle this issue alone. The United States
government must be willing and able to step in and
provide assistance (Consortium, 2011). To date, efforts
to form private-public partnership in the cybersecu-
rity arena have made only modest gains. This is due
to the basic variances in private and public sector
interests. Private companies are driven by profit and
look at cybersecurity costs in terms of the impact
to the bottom line. Governments look at the poten-
tial consequences (Bures, 2013) of a lack of robust
cybersecurity and want systems secured with much
less concern for costs. These diverse interests are at the
heart of current disagreements (Boardman & Vining,
2012) in private-public partnerships in cybersecurity.
Governments want the private sector to pay for their
own cybersecurity to a level that the government feels
will successfully secure our critical infrastructure.
They would also like for companies to report private
information about the company’s current security
practices, network designs, and other data on potential
or actual breaches of those systems. Not surprisingly,
the private sector has little interest in either paying
more for cybersecurity than they feel is necessary nor
providing proprietary information to the government
(Bures, 2013). They fear much of the proprietary
information they report to the government will end up

ABSTRACT

Current efforts to produce partnerships between
the public and private sectors in cybersecurity
have met with little success. This is due to the
fundamental mismatch between the interests of
public and private sector actors. Better aligning
these interests will help create an environment
which fosters cooperation between the private
and public arenas. In addition, changing the
structure of government support to the busi-
ness world might create a larger incentive for
businesses to join a cybersecurity partnership.
The combination of these two approaches, align-
ing interests and restructuring financial support
could lead to a self-sustaining partnership where
the interests of all parties are met while at the
same time growing cybersecurity costs are
controlled.

Creating New Private-Public Partnerships in Cybersecurity

 25NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

in the hands of their competitors (Treasury, 2013). If
not divulged in a government report, many companies
fear this information would become accessible via a
Freedom of Information Act request by their com-
petitors. Many businesses view the current construct
of private-public partnerships in cybersecurity as a
one-way street. They fulfill their regulatory reporting
requirements and yet no actionable information flows
back to them from the government (Busch & Givens,
2013). The government highlights the sensitivity and
classification (Treasury, 2013) of this information as
to why there is little to no information flowing back to
companies.

Any private-public partnership in cybersecurity
must first address the differences in interests among
all of the participants (Bures, 2013). A government
assessment of the partnership will not sufficiently
incentivize the private sector to join as principal par-
ticipants in the process. Changes in both the structure
of the partnership and in the incentives provided to
those who the government wishes to participate must
be successfully addressed for there to be real partner-
ship development.

SEPARATE INTERESTS

Understanding the differences in interests between
the government on the one side and the private sector
on the other when it comes to cybersecurity partner-
ships is the critical first step. Without addressing all
of the participants’ interests, there is little room to
forge a new and better way forward for private-public
partnerships in cybersecurity. Currently, there are very
few similarities between these two groups of interests.
Identifying the distinct differences in participants’
interests is the first step toward creating a new model
for cybersecurity partnerships.

Many of these differences originate from the two very
distinct operating models the business and govern-
ment communities utilize. The private sector focuses
on profit-making and impacts to the bottom-line
of their financial viability. They view costs, such as
those necessary for a high level of cybersecurity, as
something to be minimized. The higher costs of cyber-
security, especially to the level of cybersecurity their
partners in the government would like them to achieve
(Consortium, 2011), must come from somewhere and

it is the business’s profit margin that takes the reduc-
tion. With the rise of litigation based on cybersecurity
breaches (e.g. Sony, Target, etc.) and government
approval of class action lawsuits, the tone emanating
out of the C-suite in companies is slowly changing. To
date, not enough change in these companies’ operating
models have occurred to justify a decrease in govern-
ment interest in critical infrastructure cybersecurity.

The manner in which the business community
addresses risk is also quite different from how the
government addresses it. Risk is inherent in all
business activities and therefore, experienced busi-
ness professionals have learned to manage risk in
multiple ways. These professionals have spent their
entire business careers addressing and mitigating
risks based on the risk’s economic impact to the
business. Mitigating risks in a resource constrained
environment that will allow the business to remain
afloat during a crisis and quickly recover their ability
to generate revenue is at the heart of business risk
mitigation strategies. If the perceived cost to the
business of a cybersecurity protocol is more than the
perceived cost of potential data loss or a breach of
the company’s networks, then many business profes-
sionals would opt to accept the risk versus expending
funds for tighter cybersecurity. They are also
conditioned to seek a return on investment for every
dollar spent. Currently, there is little data to show
the actual financial impact of cybersecurity strate-
gies in real dollars for companies (Consortium, 2011).
Presently, there are very few examples of real costs
from potential breaches or data loss to compare to
the up-front investment required to implement cyber-
security postures which might prevent these events
from taking place. This leads many business profes-
sionals to accept their current level of risk since they
cannot determine the right mix of cyber defenses.

The United States government, on the other hand,
views security and risks under a completely different
rubric. One of the primary duties of the govern-
ment is to provide security for the population. It does
this with much less regard for costs than within the
corporate world. Obviously, the amount of resources
available to the U.S. government for security is orders
of magnitude more than the resources available to
the private sector (Bissell, 2013). The U.S. govern-
ment views the providing of security as one of the
core functions driving its very existence. Threats

Creating New Private-Public Partnerships in Cybersecurity Creating New Private-Public Partnerships in Cybersecurity

 26 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

are assigned strategies and these strategies are then
resourced accordingly and tracked to establish the suc-
cess of failure of the strategy. It is little surprise that
the government would apply the same basic principles
to critical infrastructure cybersecurity. Therefore, the
government expects private sector companies who
own and operate our critical infrastructure to fully
support not only the government’s programs but also
the government’s views.

INTERESTS ALIGNMENT AND
RECOMMENDATION

Any future private-public partnerships in cybersecu-
rity will need to adequately address both the interests
of the U.S. government as well as the interests of
the private sector to be successful. In the case today,
too much focus is on the government’s requirements
and too little on the desires of the private sector.
Therefore, there have been few notable achievements
in these private-public partnerships. New programs
will need to address all of the following interests:

 � Private sector desires for:

 � Privacy or internal or proprietary information

 � Lower costs

 � Lower regulatory requirements

 � Other tools to assist in the
management of cyber risks

 � Governmental desires for:

 � Secure privately owned and
operated critical infrastructure

 � Information from businesses on their
cybersecurity programs and their results

 � Private sector participation in
government cybersecurity programs

There is an example for a structure that would
address a number of the interests above. It has not
been applied to cybersecurity before but the legal
and functional framework is already in place. The
United States Air Force convenes two separate boards
in event of an aircraft accident. One is an Accident
Investigation Board (AIB) and the other is a Safety
Investigation Board (SIB) (USAF, 2013). Typically,

the SIB convenes first and is completely focused on
identifying the root cause of the accident in order to
make any immediate changes to Air Force policies or
guidance which might have led to the accident. This
is done to ensure that the weapon systems involved
are brought back up to full readiness as quickly as
possible. The information gathered by the SIB is not
releasable to the public, nor is it obtainable through
a Freedom of Information Act request. It is sim-
ply designed to identify the cause of an accident as
quickly as possible to ensure a repeat accident does
not occur. The Accident Investigation Board (AIB),
on the other hand, conducts their investigation with
some portions of the SIB’s report but continues its
legal process to assign blame. The AIB’s reports are
made public at the conclusion of the board’s investiga-
tion. This dual structure could be easily adopted for
cybersecurity.

Many companies desire not to release private, internal
information on their network designs, known vulner-
abilities, and potential or actual breaches due to the
fact that much of this information would eventually
be made available to the public, and hence to their
business competition. In the event of a potential or
actual breach of corporate networks, a system similar
to the SIB should be activated. The intent of the
Cybersecurity Investigation Board (CIB) would be to
determine the five W’s of the event. Who conducted
the breach? Where did the breach occur? When did it
occur? What did the perpetrators do while inside the
company’s networks? Why did this event occur? The
CIB would collect this data so that they could quickly
share the relevant aspects of the event with the rest of
our critical infrastructure owners while keeping the
affected company’s proprietary information private.
Either refusing to release the report or sanitizing the
report to ensure that other companies would not be
able to piece together any proprietary information and
identify the affected company would be a core aspect
of this reporting regime.

There would be a need for legislation enacted by the
government to protect this type of communication
and the identity of the company who provided it. The
protected communication system described above
coupled with the new legal guarantees should address
private sector interests on issues of privacy as well as
governmental interests in obtaining information about
potential or actual breaches quickly and efficiently.

Creating New Private-Public Partnerships in Cybersecurity Creating New Private-Public Partnerships in Cybersecurity

 27NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

This type of incentive would cost very little, yet
help eliminate the fears of many companies in their
decision to cooperate with the U.S. government on
cybersecurity.

Another incentive which might bring more of the
private sector to the table of critical infrastructure
cybersecurity involves lowering the overall costs asso-
ciated with their cybersecurity programs.

With costs identified as the number one issue busi-
nesses contend with regarding their cybersecurity
posture (Consortium, 2011), some form of govern-
ment subsidy would be required to assist in bringing
in partners from the business community. What is
the best structure for the government to provide a
subsidy to those who own and operate our nation’s
critical infrastructure? With current projections of
decreasing federal and local governmental budgets
there should be no expectation that any government
will have the resources available to provide high
levels of funding directed toward cybersecurity; no
blank checks in any future cybersecurity partner-
ships. Yet, with cost as the primary hindrance to
effective cybersecurity practices, some amount of
funding will need to be made available to these
owner/operators. By addressing the private sector’s
cost interest while simultaneously addressing the
government’s participation interest there might be a
combining of these interests to find a solution.

The U.S. government should create a cybersecurity
partnership regime that rewards industry for basic
computer network security. This level of cybersecurity
is commonly referred to as computer system hygiene.
The government should hold businesses account-
able for basic security postures like the changing
of passwords, patching of operating systems and
software applications to remove known vulnerabili-
ties, and the monitoring of their internal systems for
potential breaches (Clinton, 2011). The government
should also expect companies to pay for these security
steps as they are inherently in the best interests of the
company to do so. In exchange, once a business has
proven they have met the basic standard for cyberse-
curity, each business would now be allowed to join the
private-public partnership, or consortium, for cyberse-
curity. Becoming a member of the consortium would
then open up a wide range of benefits to the company
including better access to government information,
highly subsidized or free of charge access to research,

development in the cybersecurity field, and access to
expert on-site or remote assistance from government
employees or agencies. Most importantly, participa-
tion in this private-public partnership would ensure
the company’s reports and other private network
information would be handled via the secure com-
munications channel established by Congress in the
Cybersecurity Investigation Board process.

The combination of new structure (Cybersecurity
Investigation Board) and new financial incentives for
bringing a company’s systems up to a standard level
of cybersecurity defense should address all of the
interests of the business community while they debate
the merits of joining the private-public partnership
(Bissell, 2013). Higher participation from the private
sector and more information flowing on cyber-defen-
sive strategies and capabilities would address most of
the government’s interests as well (Germano, 2014).
By successfully addressing each of the participants’
interests – both private and public – an increase in not
only the potential for a higher level of participation in
this private-public partnership for cybersecurity, but
also an increase in the chances for success in cyberse-
curity for our critical infrastructure could be realized.

CONCLUSION

The threats posed in cyberspace by organized crime,
state and non-state actors, and hacktivists among
others must be successfully mitigated for the United
States to remain safe and secure. All of these cyber
threats can be directed against our privately and
publically owned and operated critical infrastructure
to the advantage of our adversaries. Historically, the
business community regarded cooperation with the
U.S. government as an obstacle to business efficiency
and something to be entered into slowly, if at all.
Far too many of the business’ interests were not
addressed in current private-public partnerships for
cybersecurity. The government will need to adapt
current partnership models to better address the
business community’s concerns or face a decision to
either mandate compliance via legislation or abandon
the quest for cybersecurity partnerships entirely.
The future of private-public partnerships does not
have to produce such a low return on investments.
Molding new partnership models after existing,
successful models in other fields can address many

Creating New Private-Public Partnerships in Cybersecurity Creating New Private-Public Partnerships in Cybersecurity

 28 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

of the interests which remain unanswered today.
Changing the structure of government sponsorship
and funding of these programs may also help
generate the level of participation which could
lead private-public partnerships in cybersecurity
to become self-sustaining. Companies will need to
see more advantages to joining a partnership than
they see disadvantages. They need to see not only
cost savings but also a return on the cybersecurity
investment. Achieving a government standard for their
cybersecurity posture will not only get the company
to a point where they can protect themselves, but also
open up a whole other set of positive opportunities
which, in the long run, will lessen their financial
burden for their cybersecurity programs.

REFERENCES CITED
Bissell, K. (2013, March). A strategic approach to cybersecurity. Financial
Executives International. Retrieved from: http://www.financialexecutives.org/

Boardman, A.E. & Vining, A.R. (2012, 83.2). The political economy
of public-private partnerships and analysis of their social value.
Annals of Public and Cooperative Economics. 129.

Bures, O. (2013). Public-private partnerships in the fight against
terrorism. Crime, Law and Social Change, pp. 429–455. doi: 10.1007

Busch, N.E. & Givens, A. D. (2013). Realizing the promise of
public-private partnerships in U.S. critical infrastructure protection.
International Journal of Critical Infrastructure Protection, 6, 39–50.

Business Software Consortium (2011, March 8). Business improving our
nation’s cybersecurity through public-private partnerships [White paper].

Clinton, L. (2011). A relationship on the rocks: industry-government
for cyber defense. Journal of Strategic Security, pp. 97–112.

Germano, J. (2014, October). Cybersecurity partnerships: a new era in public-
private collaboration. The Center on Law and Security, NYU School of Law.

Iasiello, E. (2012, September 5). Fixing U.S. national cybersecurity: a
modest proposal. Comparative Strategy, pp. 301–307. doi: 10.1080

United States Air Force. (2013, November 1). Air force safety and accident
board investigations [Fact sheet]. Retrieved from
http://www.acc.af.mil/library/factsheets/factsheet.asp?fsID=2356

United States Department of Treasury. (2013). Report to the
President on Cybersecurity Incentives Pursuant to Executive Order
13636. Retrieved from http://www.treasury.gov/press-center/
Documents/Treasury%20Report%20(Summary)%20to%20the%20
President%20on%20Cybersecurity%20Incentives_FINAL.pdf

AUTHOR

Chris Golden is a retired senior United States Air Force
officer. He spent most of his career flying various
airplanes and helicopters and working as a strategic
planner. He holds a Bachelor of Science in Computer
Science from the University of Miami, a Master of
Science in Computer Information Systems from Regis
University, and a Master of Arts from the Naval
War College. He is currently the director of strategic
cybersecurity planning for a major American financial
services provider.

Creating New Private-Public Partnerships in Cybersecurity Creating New Private-Public Partnerships in Cybersecurity

 29NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Evolution of Information Security Issues in Small Businesses Creating New Private-Public Partnerships in Cybersecurity

 30 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Evolution of Information Security Issues in
Small Businesses

Debasis Bhattacharya | Debra A. Nakama

ABSTRACT

Small businesses often display a lack of concern
towards cyber crime and information security
problems. This lack of concern usually results
in delayed or incorrectly implemented security
measures, which increases vulnerability to cyber
crime. This paper presents an empirical study
of 122 small business owners from the state of
Hawaii with regards to their information security.
These results are compared with earlier studies
conducted in 2000 and 2003. The results of this
study showed a significant evolution of informa-
tion security issues within small businesses.
This research suggests that small business
leaders need to demonstrate leadership, tech-
nical knowledge, and actions to broaden their
preparation against a range of information secu-
rity issues and problems. The findings may be
applicable to small business leaders who pro-
actively search for a cost-effective and optimal
combination of leadership styles, technologies,
and policies that mitigate the evolving threats of
cyber crime and information security problems.

INTRODUCTION

Globalization and increased reliance on the Internet
has forced many organizations to rely on computer
and networking technology for the storage of valu-
able company and personal information (Easttom,
2006). Many small businesses have embraced Internet
technologies to reach out to their customers, partners,
and employees from around the world (Day, 2003).
Proliferation of online activity and e-commerce has
attracted the attention of existing criminal organiza-
tions and a new breed of cyber criminals (Gupta and
Hammond, 2005).

Cyber criminals engage in online attacks that exploit
vulnerabilities and deficiencies within the cyber
defenses of organizations (Szor, 2005). Because of
size, resource, and skill constraints, small businesses
are often ill-prepared to combat the emerging threats
of cyber crime (Ryan, 2000). Small business owners
and key employees with effective leadership styles
can help prioritize actions needed to combat cyber-
crime and mitigate information security concerns
(Northouse, 2004). Conversely, ineffective leadership
styles can lead to passive or reactive measures against
cyber crime, which can lead to business damages and
losses (Gupta and Hammond, 2005). Phishing, a
deceptive strategy to gain personal information the
target might not otherwise divulge, is an increasingly
common form of computer attack (Easttom, 2006).

Current research indicates that the information
systems of small businesses in the United States are
vulnerable to cyber crime (Adamkiewicz, 2005; Baker
and Wallace, 2007; O’Rourke, 2003). The problem
is small businesses often display a lack of concern
towards information security problems (Gupta and
Hammond, 2005). This lack of concern usually
results in delayed or incorrectly implemented security
measures, which increases vulnerability to cyber crime

Evolution of Information Security Issues in Small Businesses

 31NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Creating New Private-Public Partnerships in Cybersecurity

(Andress, 2003; DeZulueta, 2004). While it may
appear that a passive and reactionary approach to
computer security threats is economically optimal
and cost-effective for many small businesses, the
consequences of an actual cyber crime may be poten-
tially damaging to the business.

This study examined the problem by determining
whether and to what degree any relationship exists
between leadership styles and the level of concern for
information security problems. The general popula-
tion for the study included small businesses located
in the state of Hawaii. The results of this study pro-
vides small business leaders with information useful
in assessing their level of concern and determining
which leadership styles are the most effective in miti-
gating information security problems.

SECURITY ISSUES WITHIN
SMALL BUSINESSES

Cyber crime is not only relevant to large corporations,
but to the millions of small businesses in the United
States (Gupta and Hammond, 2005). According to
the U.S. Small Business Administration and the Small
Business Act, a small business is an independently
owned entity and not dominant in its field of opera-
tion (SBA, 2015). The U.S. Small Business Act also
states that the definition of a small business varies by
industry. The Office of Advocacy of the U.S. SBA,
defines a small business as a business having 500 or
fewer employees. This study used U.S. SBA definitions
and classifications.

Small businesses play a significant role in the U.S.
economy. According to the U.S. SBA’s Office of
Advocacy, the U.S. had 17,000 large businesses
and approximately 25 million small businesses in
2005. Small businesses generated 2.4 times more
innovations than large businesses (Easttom, 2006).
According to the U.S. SBA, small businesses employ
half of all private sector employees and pay half of
the total U.S. private payroll.

Small businesses in the U.S. have generated between
60% and 80% of net new jobs annually over the last
decade and created more than 50% of non-farm pri-
vate gross domestic product (SBA, 2015). Economic
figures indicate the importance of small businesses

to the U.S. economy and the potential for negative
economic impacts from cybercrime (CSI/FBI, 2015).
A coordinated cyber threat against small businesses
might readily impact a significant section of the U.S.
economy (Symantec, 2015). Because small businesses
are so important to the U.S. economy, preparation
against the evolving threat of cyber crime is important
(CSI/FBI, 2015).

In regard to their preparations against cyber crime,
small businesses can be divided into three categories.
According to the report on the state of small business
security (State of small business security, 2006), one
category consists of “mom and pop” businesses whose
business computers also serve as the owners’ home
computers. Small businesses in the “mom and pop”
category have basic anti-virus and security software
in place and rarely rely on skilled professionals for
security assistance. The report on the state of small
business security also described a second category of
small companies with a few hundred employees and a
dedicated information technology (IT) staff (CSI/FBI,
2015). According to the U.S. CSI/FBI study (2015)
small businesses with a few hundred employees rely on
the knowledge and expertise of their key IT personnel
for cyber security.

The third and final category included small businesses
that outsource most of their security requirements to
third-party vendors (State of small business security,
2006). According to the report on the state of small
business security, vendors provide the level of security
needed to prevent cyber crime and enable recovery
from security breaches. Small businesses that out-
source information security depend upon on the
outside vendor’s training and reliability for their
security needs (CSI/FBI, 2015). According to the U.S.
CSI/FBI study (2015) reliance on an external vendor
introduces risks as well as benefits in that it removes
the need for a small business to train and retain skilled
IT employees to combat cyber crime.

The existing literature on cybercrime and cyber secu-
rity focuses on the needs of large organizations that
have thousands of employees, complex security needs,
and large computer systems (Adamkiewicz, 2005). The
literature on leadership styles and information security
concerns within small businesses is very limited. The
literature gap may be due to the evolution of cyber
crime, which initially targeted the computer systems
of large corporations and government organizations.

Evolution of Information Security Issues in Small Businesses Evolution of Information Security Issues in Small Businesses

 32 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

As the cybersecurity efforts of large organizations
and the government have expanded and improved, the
trends of cyber crime have shifted to vulnerable tar-
gets like small businesses (Wall, 2005). According to
the Symantec Threat Report (Symantec, 2015), cyber
criminals increasingly focused on identity theft and
fraud for motives of financial gain. The shift in the
orientation of cyber criminals over the past few years
may help to explain the present literature gap regard-
ing the impact of cyber crime on small businesses.

STUDY DESIGN

This research study used a quantitative, descrip-
tive, and correlational methodology to investigate a
possible relationship between the particular leader-
ship styles of small business owners (independent
variables) and the level of concern for information
security problems (dependent variables) within small
businesses in Hawaii. The study defined a “small busi-
ness” as one with 500 or fewer employees, according
to the United States Small Business Administration
(SBA, 2015). This study utilized the Multifactor
Leadership Questionnaire (MLQ) instrument (Bass
and Avolio, 2004), to assess each company’s leadership
style (independent variable) and the Small Business
Security Survey instrument (Ryan, 2000) to determine
the level of concern for information security problems
within each small business (dependent variable).

For the first part of the research, a pilot study was
conducted with 10 small businesses that are mem-
bers of the various chambers of commerce and trade
associations within Hawaii. The pilot study partici-
pants, randomly selected from the study population,
were small business owners who fulfilled the eligibility

criteria of the study population. The randomly
selected 10 businesses represented different indus-
tries, and had different numbers of employees. Five
businesses belonged to the Chamber of Commerce
of Hawaii (CoCHawaii, 2015) and five businesses
belonged to the Small Business Hawaii (SBH, 2015)
trade association.

The second part of the current research involved
an online survey of 800 small businesses that, as
mentioned previously, are members of the various
chambers of commerce and trade associations within
Hawaii. Businesses that belong to more than one
organization were included only once in the study
population in order to avoid duplication. The online
survey used two previously validated, reliable, and
broadly used research survey instruments (Bass and
Avolio, 2004; Ryan 2000).

The third part of this study involved triangulation
and the random selection of 10 small businesses from
the list of valid respondents to the online survey.
Interviews were conducted with 10 businesses to help
triangulate the results of the online survey and to
confirm or dispute the findings. Triangulation helped
reduce the chances for systematic error because the
method provided a strategy for obtaining the same
information through different methods (Rubin and
Babbie, 2005).

Study Variables

The study contained 14 dependent variables. As shown
in Table 1, each variable represented a specific informa-
tion security problem that a small business may face
(Ryan, 2000). Using a Likert scale, the study examined
the level of concern for each security problem.

TABLE 1: 14 DEPENDENT VARIABLES

TABLE 1 CONTINUED ON NEXT PAGE

INFORMATION SECURITY PROBLEM Examples of problems in small businesses.

INSIDER ACCESS ABUSE Unauthorized login by employees.

VIRUSES Programs that enter through attachments in email.

POWER FAILURE Loss of data due to abrupt shutdown of computers.

SOFTWARE PROBLEMS Vulnerable software due to absence of patches.

Evolution of Information Security Issues in Small Businesses Evolution of Information Security Issues in Small Businesses

 33NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

The three independent variables, as shown in Table 2,
were the transformational, transactional, and passive-
avoidant leadership styles as defined by Bass and
Avolio (2004). The study hypothesized that effective
leadership styles (the independent variables, listed in
Table 2) would foster concern for information security
problems (the dependent variables, listed in Table 1)
within small businesses.

LEADERSHIP STYLES
Examples in
small businesses

TRANSFORMATIONAL Visionary, dynamic owner

TRANSACTIONAL
Leader focused on
costs/benefits

PASSIVE-AVOIDANT
Absentee,
unavailable leader

The research was statistically controlled by five
intervening variables derived from the Small Business
Security Survey (Ryan, 2000), as shown in Table 3.

VARIABLE NAME
Examples in
small businesses

BUSINESS AREA Industry, as in Agriculture

EMPLOYEES Ranges from 1 to 500

ANNUAL REVENUE
$500,000 to more than $5
million

COMPUTERS
Five to more than 100
computers

CONNECTIVITY
Internet, Intranet,
E-Commerce etc.

DATA INTEGRITY Corruption of customer list or sales data

TRANSACTION INTEGRITY Corruption of financial transaction with bank

OUTSIDER ACCESS ABUSE Programs that enter through attachments in email

DATA SECRECY Confidentiality of payroll information

DATA AVAILABILITY Availability of access to time sheet data

DATA THEFT Theft of confidential employee information

DATA SABOTAGE Intentional destruction of financial data

USER ERRORS Accidental erasure of data by untrained user

NATURAL DISASTER Damage to computer systems from floods

FRAUD Impersonation and deceit used to elicit information

TABLE 1: 14 DEPENDENT VARIABLES (CONTINUED)

TABLE 2: THREE INDEPENDENT VARIABLES

TABLE 3: FIVE INTERVENING VARIABLES

Evolution of Information Security Issues in Small Businesses Evolution of Information Security Issues in Small Businesses

 34 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Hypothesis

The research study employed three statistical hypoth-
eses to measure the relationship(s) among three
independent variables (three leadership styles) and
14 dependent variables (information security prob-
lems). The H0 represented the null hypothesis and Ha
the alternative hypothesis. The following hypotheses
were tested, based on a quantitative research method-
ology, to answer the research questions.

HYPOTHESIS 1

 � H10 There is no relationship between the
transformational leadership style score
and the level of concern for information
security problems within small businesses.

 � H1a There is a relationship between the
transformational leadership style score
and the level of concern for information
security problems within small businesses.

HYPOTHESIS 2

 � H20 There is no relationship between the
transactional leadership style score and the
level of concern for information security
problems within small businesses.

 � H2a There is a relationship between the
transactional leadership style score and the
level of concern for information security
problems within small businesses.

HYPOTHESIS 3

 � H30 There is no relationship between the
passive-avoidant leadership style score
and the level of concern for information
security problems within small businesses.

 � H3a There is a relationship between the passive-
avoidant leadership style score and the
level of concern for information security
problems within small businesses.

Study Results

The study results covered various aspects of infor-
mation security relevant to small businesses. Table 4
displays the various employees and users who are
allowed access to computers and networks within
small businesses. The top two groups are full-time and
part-time employees, but other user groups like family
members and customers may also obtain gain access
to computers and networks within small businesses.

N = 122

ALL FULL-TIME EMPLOYEES 88

PART-TIME EMPLOYEES 47

TEMPORARY EMPLOYEES 26

SOME EMPLOYEES, JOB RELATED 25

CONTRACTORS 22

FAMILY MEMBERS, FRIENDS 19

CUSTOMERS 15

E-COMMERCE PARTNERS 6

TABLE 4: ACCESS TO COMPUTERS AND NETWORKS

Evolution of Information Security Issues in Small Businesses Evolution of Information Security Issues in Small Businesses

 35NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Table 5 below displays the information security poli-
cies and procedures within small businesses. The top
four items include data recovery procedures, informa-
tion security policies, information security procedures,
and computer use and misuse policies.

N = 122

DATA RECOVERY PROCEDURES 61

INFORMATION SECURITY POLICY 60

INFORMATION SECURITY PROCEDURES 56

COMPUTER USE AND MISUSE POLICY 54

PROPRIETARY DATA USE and
MISUSE POLICY

47

COMMUNICATIONS USE and
MISUSE POLICY

39

DATA DESTRUCTION PROCEDURES 33

COMPUTER EMERGENCY RESPONSE PLAN 32

BUSINESS CONTINUITY POLICY 25

COMPUTER EMERGENCY RESPONSE TEAM 22

MEDIA DESTRUCTION PROCEDURES 21

INFORMATION SENSITIVITY CODING 14

Table 6 below displays the technologies used by the
survey respondents to prevent, detect, and resolve
information security problems. The top three tech-
nologies are anti-virus software, firewalls, and power
surge protectors. The bottom of the list includes
security evaluation systems, media degaussers, and
dial-back modems.

N = 122

ANTI-VIRUS SOFTWARE 117

FIREWALLS 110

POWER SURGE PROTECTORS 103

DATA BACKUP SYSTEMS 87

SHREDDERS 84

ENCRYPTION 51

SYSTEM ACCESS CONTROL 48

INTRUSION DETECTION 46

FACILITY ACCESS CONTROL 32

REDUNDANT SYSTEMS 31

DATA SEGMENTATION 26

SYSTEM ACTIVITY MONITOR 25

SECURITY EVALUATION SYSTEMS 17

MEDIA DEGAUSSERS 7

DIAL-BACK MODEM 3

TABLE 5: INFOSEC POLICIES AND PROCEDURES

TABLE 6: INFORMATION SECURITY TECHNOLOGIES

Evolution of Information Security Issues in Small Businesses Evolution of Information Security Issues in Small Businesses

 36 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Table 7 below displays the importance of several types
of data to the respondents of the survey, recorded
on an interval scale from 0 (not important) to 5
(extremely important). Customer and privacy data
ranked among the top two items in the list, while com-
petitive and market data ranked among the bottom
two items in the list. The responses for the importance
of customer, privacy, and proprietary data were highly
negatively skewed (skewness coefficient < -1.96) indi-
cating the high importance placed by the respondents
on these aspects of information security.

N = 122 MEAN MEDIAN SD SKEW

CUSTOMER DATA 4.25 5.00 1.08 -1.53

PRIVACY DATA 4.13 5.00 1.15 -1.22

PROPRIETARY
INFO

3.83 4.00 1.32 -0.74

TRADE SECRETS 3.43 4.00 1.53 -0.36

COMPETITIVE
DATA

3.33 3.00 1.38 -0.26

MARKET DATA 3.30 3.00 1.28 -0.26

Table 8 displays the information security issues and
problems experienced by the survey respondents
within the calendar year 2007. Based on the results,
data corruption and problems with virus and mali-
cious software (or malware) topped the list of negative
experiences. Abuse of Internet access privileges by
employees and problems with reliability in informa-
tion systems also placed within the top five concerns
of survey respondents. Seven respondents reported
problems with intrusion to computer systems by
outsiders. Seven reported abuse from insiders of infor-
mation access privileges.

N = 122 SKEW

DATA CORRUPTED OR PARTIALLY LOST 24

PROBLEMS WITH VIRUS or
MALICIOUS SOFTWARE

22

EMPLOYEES ABUSED
INTERNET ACCESS PRIVILEGES

15

PROBLEMS WITH RELIABILITY OF
INFORMATION SYSTEMS

15

EXPERIENCED INFORMATION
SECURITY INCIDENT

8

OUTSIDER BREAK IN TO
INFORMATION SYSTEM

7

INSIDER ABUSED INFORMATION
ACCESS PRIVILEGES

7

VICTIM OF FRAUD 5

LOST MONEY DUE TO
INFORMATION SECURITY PROBLEM

4

VICTIM OF A NATURAL DISASTERS 4

COMPUTER EQUIPMENT STOLEN 4

PROPRIETARY DATA STOLEN 3

SECRET INFORMATION DIVULGED 3

TABLE 7: DATA IMPORTANCE

TABLE 8: INFOSEC EXPERIENCES

Evolution of Information Security Issues in Small Businesses Evolution of Information Security Issues in Small Businesses

 37NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Key Findings on Leadership and Security

The theoretical framework of this research study
was based on the full range leadership model of
Bass and Avolio (2004). The study used the MLQ
instrument that includes a Likert scale to measure
three specific leadership styles (defined here as
independent variables) of small business owners. The
MLQ instrument assesses three leadership styles by
investigating nine behavioral factors. Through exten-
sive factor analysis in 2003, Bass and Avolio have
identified the five behavioral factors of the trans-
formational leadership style as follows: idealized
attributes (IA), idealized behaviors (IB), inspira-
tional motivation (IM), intellectual stimulation (IS),
and individualized consideration (IC).

Through confirmatory factor analysis, Bass and
Avolio have also identified two behavioral fac-
tors of transactional leadership style: contingent
reward (CR) and management-by-exception
(active) (MBEA). Finally, their factor analysis
determined the two behavioral factors of laissez-
faire or passive-avoidant leadership style: passive
management-by-exception (passive) (MBEP) and
laissez-faire (LF).

The findings indicated that transactional leadership
style is significantly related to 11 out of 14 informa-
tion security problems. This implies that the higher
the level of transactional leadership style score, the
higher the level of concern for 11 information secu-
rity problems.

The transactional leadership factor of Management
by Exception Active (MBEA) is significantly related
to 10 out of 14 information security problems. This
implies that the higher the practice of active manage-
ment by exception, the higher the level of concern for
10 information security problems.

Seven out of 14 information security problems were
related to more than one leadership factor.

Using stepwise multiple regression analysis, the
transformational factor of Idealized Influence
Attributes (IIA) and the transactional factor
Management by Exception (MBEA) were the best
predictors for the seven information security prob-
lems. This implies a combination of transformation
and transactional leadership styles to prepare against
seven common security problems.

The findings also indicated that transformational
leadership style was significantly related to the level
of concern for two information security problems,
and passive-avoidance leadership was related to
a single information security problem. Using the
Pearson product-moment correlation, there is a
statistically significant (p <= 0.05), positive correla-
tion between transformational leadership style score
and the level of concern for two (out of 14) informa-
tion security problems. These two problems are data
secrecy and data availability. Thus, the null hypoth-
esis H10 is rejected.

Likewise, there is a statistically significant
(p <= 0.05), positive correlation between transac-
tional leadership style score and the level of concern
for 11 (out of 14) information security problems.
Therefore, the null hypothesis H20 is strongly
rejected.

Finally, there is a positive correlation between
passive-avoidance leadership style score and the level
of concern for one (out of 14) information security
problems, power failure. While the null hypothesis
H30 is rejected, it is not as strongly rejected as H10
and H20.

EVOLUTION OF SECURITY
ISSUES AND CONCERNS

The study results of 2008 (N=122) were compared to
similar studies, using the same survey, conducted by
Ryan (2000) and Gupta (2003). The study by Ryan
covered small businesses in the United States with
particular focus on businesses located in the state
of Maryland. 209 responses were collected from
the study by Ryan (N=209). Gupta focused on the
Chamber of Commerce in the South Eastern United
States and collected responses from 138 small busi-
ness (N=138). Table 9 describes the changes in access
to computers and networks over the years for small
businesses, with sharp growth in usage over the years
for all employees, contractors and family members.

Evolution of Information Security Issues in Small Businesses Evolution of Information Security Issues in Small Businesses

 38 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

2000 2003 2008

ALL FULL-TIME
EMPLOYEES

57.4% 49.3% 72.1%

PART-TIME EMPLOYEES 17.2% 18.8% 38.5%

TEMPORARY EMPLOYEES 21.3% 8.7% 21.3%

SOME EMPLOYEES,
JOB RELATED

31.6% 49.3% 20.5%

CONTRACTORS 6.7% 3.6% 18%

FAMILY MEMBERS,
FRIENDS

24.4% 2.2% 15.6%

CUSTOMERS 6.2% 6.5% 12.3%

E-COMMERCE
PARTNERS

1.9% 0.7% 4.9%

Table 10 displays the changes in information security
policies and procedures within small businesses.
The results suggest an increase in policies and
procedures in most categories, especially in the areas
of information security policy and procedures, and
computer misuse and data destruction.

2000 2003 2008

DATA RECOVERY
PROCEDURES

39.7% 47.1% 50%

INFORMATION
SECURITY POLICY

30.6% 40.6% 49.2%

INFORMATION
SECURITY PROCEDURES

23% 32.6% 45.9%

COMPUTER USE POLICY 24.9% 42.8% 44.3%

PROPRIETARY DATA
USE POLICY

18.2% 26.1% 38.5%

COMMUNICATION
USE POLICY

13.9% 25.4% 32%

DATA DESTRUCT
PROCEDURES

12.9% 21% 27%

COMP EMERGENCY
RESPONSE PLAN

13.4% 18.8% 26.2%

BUSINESS
CONTINUITY POLICY

21.5% 23.9% 20.5%

COMP EMERGENCY
RESPONSE TEAM

7.18% 13.8% 18%

MEDIA DESTRUCTION
PROCEDURES

6.7% 9.4% 17.2%

INFO
SENSITIVITY CODING

13.4% 25.4% 11.5%

Table 11 displays the changes in the technologies
used by the survey respondents to prevent, detect,
and resolve information security problems. The
results indicate a sharp increase in the use of fire-
walls, shredders, and intrusion detection systems,
but a surprising decline in the use of system access
control and redundant systems.

TABLE 9: ACCESS TO COMPUTERS AND NETWORKS TABLE 10: INFOSEC POLICIES AND PROCEDURES

Evolution of Information Security Issues in Small Businesses Evolution of Information Security Issues in Small Businesses

 39NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

2000 2003 2008

ANTI-VIRUS SOFTWARE 87.1% 56.5% 95.9%

FIREWALLS 25.8% 42.8% 90.2%

POWER SURGE
PROTECTORS

70.3% 79.7% 84.4%

DATA BACKUP SYSTEMS 75.1% 65.2% 71.3%

SHREDDERS 44.5% 48.6% 68.9%

ENCRYPTION 25.4% 18.8% 41.8%

SYSTEM ACCESS
CONTROL

72.7% 58% 39.3%

INTRUSION DETECTION 22.5% 25.4% 37.7%

FACILITY ACCESS
CONTROL

14.4% 17.4% 26.2%

REDUNDANT SYSTEMS 45.5% 34.8% 25.4%

DATA SEGMENTATION 28.7% 23.9% 21.3%

SYSTEM ACTIVITY
MONITOR

15.8% 21% 20.5%

SECURITY
EVALUATION SYSTEMS

11.5% 8.7% 13.9%

MEDIA DEGAUSSERS 3.3% 0.7% 5.7%

DIAL-BACK MODEM 10% 8.7% 2.5%

Table 12 displays the changes in the importance of
several types of data to the respondents of the survey,
recorded on an interval scale from 0 (not important)
to 5 (extremely important). The results indicate a
steady increase in the importance of customer, pri-
vacy, proprietary, trade secrets, and competitive data.

TABLE 12: DATA IMPORTANCE

2000 2008

DATA CORRUPTED
or PARTIALLY LOST

28.7% 19.7%

PROBLEMS WITH
VIRUS/MALICIOUS SW

20.6% 18.0%

EMPLOYEES ABUSED
INTERNET PRIVILEGES

6.7% 12.3%

PROBLEMS WITH
RELIABILITY OF IS

18.2% 12.3%

EXPERIENCED
I.S. INCIDENT

8.6% 6.6%

Table 13 displays the changes in information security
issues and problems experienced by the survey respon-
dents in two separate studies conducted in 2000 and
2008. The results indicate that data corruption and
problems with viruses and malicious software remain
the highest concerns for small businesses. The results
also indicate a sharp rise in abuse of Internet privileges.

TABLE 11: INFORMATION SECURITY TECHNOLOGIES

Evolution of Information Security Issues in Small Businesses Evolution of Information Security Issues in Small Businesses

 40 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

TABLE 13: INFOSEC EXPERIENCES

2000 2008

DATA CORRUPTED
or PARTIALLY LOST

28.7% 19.7%

PROBLEMS WITH
VIRUS/MALICIOUS SW

20.6% 18.0%

EMPLOYEES ABUSED
INTERNET PRIVILEGES

6.7% 12.3%

PROBLEMS WITH
RELIABILITY OF IS

18.2% 12.3%

EXPERIENCED
IS INCIDENT

8.6% 6.6%

OUTSIDER
BREAK-IN TO I.S.

1.9% 5.7%

INSIDER ABUSED
INFO PRIVILEGES

3.3% 5.7%

VICTIM OF FRAUD 3.8% 4.1%

LOST MONEY DUE TO
I.S. PROBLEM

9.1% 3.3%

VICTIM OF A
NATURAL DISASTER

3.3% 3.3%

COMPUTER
EQUIPMENT STOLEN

2.9% 3.3%

PROPRIETARY
DATA STOLEN

1.0% 2.5%

SECRET
INFORMATION DIVULGED

1.9% 2.5%

IMPLICATIONS FOR SMALL BUSINESSES

These study findings support the model that transfor-
mational leadership augments transactional leadership
in predicting effects on employees. Bass and Avolio
(2004) supported the model with evidence and noted
that transactional leadership provides a basis for
effective leadership, but a “greater amount of Extra
Effort, Effectiveness, and Satisfaction is possible from
employees by augmenting transactional with transfor-
mational leadership” (p. 22).

The study also highlights the need to complement
the benefits of transformational and transactional
leadership styles with effective policies and updated
technologies that mitigate information security prob-
lems. Small businesses cannot rely primarily on basic
technologies such as anti-virus software, firewalls, and
power surge protectors — the top three technologies
in Table 6 — to protect against cybercrime. Likewise,
small businesses cannot rely primarily on basic data
recovery procedures and information security policies
and procedures for protection against cybercrime.

Recommendations

The first recommendation for small business leaders
is to introduce a systematic and consistent system
of leadership assessment within their organization.
The Multifactor Leadership Questionnaire (MLQ),
available from Mind Garden Inc. (2008), is a valid
and reliable survey instrument for assessing leader-
ship styles within a small business. The results of
this research study highlight the importance of three
leadership factors that are components of transfor-
mational and transactional leadership styles. These
leadership factors are Idealized Influence Attributes
(IIA), Contingent Reward (CR), and Management-
by-Exception Active (MBEA). Small business leaders
can evaluate their scores on these three leadership
factors by using the MLQ (Rater Form) with their
subordinates.

The second recommendation is for small busi-
nesses to conduct an audit of their information
security. A website (ReadyBusiness, 2015) and guide
published by the US Department of Homeland
Security (2015) provides a detailed checklist to con-
duct security assessments within small businesses.
Additional detailed guides from NW3C (2015) and

Evolution of Information Security Issues in Small Businesses Evolution of Information Security Issues in Small Businesses

 41NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

ISO/IEC (2015) provides a risk audit for very small
businesses, with 10 or less employees, who were the
primary respondents for this research study.

The third recommendation is to utilize a combination
of leadership styles, technology and policy to combat
specific security problems and concerns, as displayed
in Table 14. It should be noted that small businesses
should adopt a cost-effective and practical approach
to security solutions. For example, deploying an
internal computer emergency response team (CERT)
or installing an Intrusion Detection System (IDS) may
not be realistic for many small businesses. However,
small businesses could rely on security training,
outsourcing solutions and computer use and misuse
policies to alleviate the security threats. The key is that
one leadership style is not applicable to all security
problems and that technology and policy solutions
need to be augmented with leadership and knowledge

Suggestions for Future Research

Based on the study findings, two suggestions are
offered for further research. The first suggestion is to
conduct additional studies in several small and large
states in the United States and broaden the sample
population. This expansion may result in findings that
are based on experiences of small business in various
situations that are not relevant to the state of Hawaii.
Additional research may be conducted in overseas
countries that contain small businesses with profiles
similar to those of small businesses in the United
States. This global exposure will provide researchers
with insight into global security problems and issues.

Another suggestion is to conduct similar studies on an
ongoing basis for the next decade. Given the evolving
nature of cybercrime and information security, the
attitudes and exposures of small businesses vary over

SECURITY PROBLEM Leadership Style Technology and Policy to Augment Leadership Style

INSIDER ACCESS ABUSE Transactional
Computer Emergency Response Team,
Encryption Technology

VIRUSES Transactional Anti-virus software, Computer Emergency Response Plan

DATA INTEGRITY Transactional
Intrusion Detection Systems,
Computer Use and Misuse Policy

OUTSIDER ACCESS ABUSE Transactional Intrusion Detection Systems

DATA SECRECY Transformational
Information Security Policy,
System Activity Monitors, Anti-virus software

DATA AVAILABILITY Transactional Computer Use and Misuse Policy

DATA THEFT Transactional
Computer Emergency Response Team,
Anti-virus software, System Activity Monitors

DATA SABOTAGE Transactional
Computer Emergency Response Team,
Intrusion Detection Systems

USER ERRORS Transactional
Computer Emergency Response Team,
Anti-virus software

NATURAL DISASTER Transactional Computer Emergency Response Plan

FRAUD Transactional Computer Emergency Response Team

TABLE 14: CYBERCRIME LEADERSHIP, TECHNOLOGY AND POLICY

Evolution of Information Security Issues in Small Businesses Evolution of Information Security Issues in Small Businesses

 42 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

time. As such, regular studies conducted over a long
period of time will provide researchers with details on
trends and new issues. The results from these studies
will provide researchers with a comprehensive evalu-
ation of the growth and evolution of cyber crime and
the abilities to combat it.

CONCLUSIONS

This research study is socially significant in its finding
that leadership styles are statistically significant when
it comes to mitigating information security issues and
concerns within small businesses. Small business lead-
ers are preoccupied with everyday business issues and
concerns and often display a lack of concern towards
information security problems. A lack of concern
usually results in delayed or incorrectly implemented
security measures, which increases vulnerability to
cyber crime (Andress, 2003).

This research has demonstrated the need for effective
transactional and transformation leadership styles
that will enable small business leaders to prioritize
their efforts to mitigate cyber crime. An optimal
combination of leadership styles, security policies,
and technology enable small businesses to prevent and
combat cyber crime.

REFERENCES CITED
Adamkiewicz, S. L. (2005). The correlation between productivity and
the use of information security controls in small businesses. The
George Washington University, United States — District of Columbia.

Andress, A. (2003). Surviving security: How to integrate people,
process and technology. New York: Auerbach Publications.

Baker, W. H., & Wallace, L. (2007). Is information security
under control? IEEE Security & Privacy.

Bass, B. M., & Avolio, B. (2004). The multifactor
leadership questionnaire: Sampler set.

CoCHawaii. (2015). The Chamber of Commerce of Hawaii.
Retrieved May 26, 2011, from http://www.cochawaii.com/.

CSI/FBI. (2015). Computer Crime and Security Survey XI Annual.
Retrieved September 3, 2015, from
http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2006.pdf.

Day, K. (2003). Inside the security mind: Making tough
decisions. Upper Saddle River, NJ: Prentice Hall.

DeZulueta, M. (2004). A novel neural network based system for
assessing risks associated with information technology security
breaches. Florida International University, United States — Florida.

Easttom, C. (2006). Computer security fundamentals.
Upper Saddle River, NJ: Prentice Hall.

Gupta, A., & Hammond, R. (2005). Information systems security
issues and decisions for small businesses: An empirical examination.
Information Management & Computer Security, 13(4), 297.

Homeland Security. (2015). Tools for small business. Retrieved September 3,
2015, from http://www.ntsbdc.org/docs/sba_homeland_security.pdf

ISO/IEC. (2015). ISO/IEC 17799:2005 Information
technology — security techniques. Retrieved September 3, 2015,
from http://www.iso.org/iso/information_security.

MindGarden. (2015). Multifactor Leadership Questionnaire. Retrieved
September 3, 2015, from http://www.mindgarden.com/products/mlq.htm

Northouse, P. G. (2004). Leadership: Theory and
practice. Thousand Oaks, CA: Sage.

NW3C. (2015). National White Collar Crime Center. Retrieved
May 26, 2015, from http://www.nw3c.org/.

O’Rourke, M. (2003). Cyberattacks prompt response to
security threat. Risk Management, 50(1), 8.

ReadyBusiness. (2015). Ready.Gov—small business readiness. Retrieved
September 3, 2015, from http://www.ready.gov/business/index.html.

Rubin, A., & Babbie, E. (2005). Research methods for social
work (5th ed.). Belmont, CA: Brooks/Cole-Thomson.

Ryan, J. J. C. H. (2000). Information security practices and
experiences in small businesses. The George Washington
University, United States — District of Columbia.

SBA. (2015). US Small Business Administration. Advocacy Small
Business Statistics and Research. Retrieved September 3, 2015,
from http://app1.sba.gov/faqs/faqindex.cfm?areaID=24.

SBH. (2015). Small Business Hawaii. Retrieved September 3, 2015,
from http://www.smallbusinesshawaii.com/SBHabout.html.

The state of small business security in a cyber-economy:
Hearing before subcommittee on regulatory reform and
oversight of the committee on small business, US House of
Representatives, 109th Congress Second Sess. (2006).

Symantec. (2015). Small and mid-sized business products. Retrieved
September 3, 2015, from http://www.symantec.com/smb/products/index.jsp.

Szor, P. (2005). The art of computer virus research and
defense. Upper Saddle River, NJ: Symantec Press.

Wall, D. S. (2005). The internet as a conduit for criminal activity.
In A. Pattavina (Ed.), Information technology and the criminal
justice system. Thousand Oaks, CA: Sage Publications.

Evolution of Information Security Issues in Small Businesses Evolution of Information Security Issues in Small Businesses

 43NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

AUTHORS

Debasis Bhattacharya (debasisb@hawaii.edu) is cur-
rently a faculty member at the University of Hawaii
Maui College and is responsible for the Applied
Business and Information Technology program.
Dr. Bhattacharya has worked in the software indus-
try for 27 years for large mainland corporations such
as Oracle and Microsoft Corporation. He has lived
on Maui, Hawaii, for the past 13 years and has been
actively researching the information security needs of
small business owners since 2008.

Debra A. Nakama (debran@hawaii.edu) has more than two
decades of experience implementing federal workforce
and economic development career pathways from
middle school to community college to the workforce.
Over the last 10 years, with the Maui Educational
Consortium, a K–16 cross-level teachers and adminis-
trators group, Dr. Nakama has focused on designing
evaluations using longitudinal intervention strategies
as a way of informing K–12 and college stakehold-
ers of effective methods for increasing the college
matriculation rates of underachieving populations.

Hybrid Implementation of Flipped Classroom Approach to Cybersecurity EducationEvolution of Information Security Issues in Small Businesses

 44 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Hybrid Implementation of Flipped Classroom
Approach to Cybersecurity Education

Aparicio Carranza | Casimer DeCusatis

ABSTRACT

A flipped classroom is a pedagogical model in
which the typical lecture and homework/lab por-
tions of a course are reversed. Students review
course content each week on their own time,
and then devote class time with an instructor
to a discussion of the prepared material and
hands-on practice exercises. The notion of a
flipped classroom has been studied extensively,
and draws on such concepts as active learn-
ing, student engagement, and hybrid course
design. We discuss the cybersecurity teaching
for Computer Engineering Technology students
at New York City College of Technology (NYCCT),
of the City University of New York (CUNY) using
a version of the flipped classroom. NYCCT is an
open institution and is a federally designated
Hispanic Serving Institution (HSI) with a sig-
nificant population of women and other groups
which are under-represented in IT fields. A ver-
sion of the flipped classroom has proved to be
an effective way of engaging the students in the
study of computer security. The courses have
unique requirements because students need
an environment to practice their hacking skills
which is isolated from the outside world (a virtual
lab setting is used for this purpose). Individual
students also prepare two short case studies
on cybersecurity topics of their choosing and a
semester-long research project. Since this is an
elective special topics course, there are no tradi-
tional exams or tests. We employ a hybrid model
in which alternate class meetings are met using
Skype. We present a detailed discussion of the
methods used in this course and feedback from
students with their recommendations for broader
adoption of this approach.

INTRODUCTION

There has been a significant increase in the number,
severity, and complexity of attacks against com-
puter infrastructure in recent years. For example, the
number of vulnerabilities catalogued by the NIST
database of Common Vulnerabilities and Exposures
(VCE) increased 30% between 2014 and 2015, includ-
ing nearly 10,000 new incidents in the past year
alone (Cisco 2014 annual security report). Given
the fundamental importance of a secure computing
environment for many lines of business, cybersecurity
has been widely recognized as a national priority by
such organization as the Department of Homeland
Security, NSF, NIST, and the Office of the President
of the United States (White House, 2015; Obama,
2015; Exec. Order No. 13636 (2013); Presidential
Policy Directive, 2013). Cybersecurity has also been
recognized as a critical asset in most leading aca-
demic, industry, and government organizations.
Degree programs and specializations in cybersecu-
rity are widely offered as part of the undergraduate
portfolio by many computer science and information
technology (IT) programs worldwide, according to
the National Initiative for Cybersecurity Careers and
Studies and other sources (National Initiative for
Cybersecurity Careers and Studies, 2015; Corno, 2014;
IT Career Finder, 2014–2015; The National Initiative
for Cybersecurity Education, 2015; ACM Curricula
Recommendations, 2015). Without additional
education programs in this field, the IT industry will
continue to face a shortfall of between one and two
million trained, certified security professionals within
the next five years (Corno, 2014; IT Career Finder,
2014–2015). Current analyst reports note that hiring
demand for security experts has increased steadily
over the past three years in both government and
private sector positions and that security is the only
area of certified IT skills that has never had a negative
quarter since 2008 (IT Career Finder, 2014–2015).

Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education

 45NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Evolution of Information Security Issues in Small Businesses

The National Institute for Cybersecurity Education
has recently encouraged the formation of new
formalized cybersecurity education programs (The
National Initiative for Cybersecurity Education,
2015). The Association of Computer Machinery
(ACM), in work supported by the National Science
Foundation, has also produced curriculum recommen-
dations for cybersecurity education (ACM Curricula
Recommendations, 2015). A recent National Science
Foundation workshop emphasized the need for bet-
ter security education in undergraduate computer
science programs and the need to treat cybersecurity
as a foundational, multi-disciplinary skill (much like
courses in operating systems). This report cites a par-
ticular need to encourage increased participation from
traditionally under-represented students in this field.

Conventional approaches to information security
education are hard pressed to prepare enough students
with the right skills to meet rapidly growing demand
in this field. While industry certification programs
are available, they tend to emphasize memorization
and repetition over a deeper cognitive framework or
understanding. It can be quite challenging to prepare
students for IT careers in this rapidly evolving field
or to integrate these offerings into a more tradi-
tional undergraduate engineering curriculum. More
hands-on experience is desirable since students must
be prepared to deal with not only existing security
threats but also new and increasingly complex exploits
which emerge more frequently each year. However,
students require a secure, isolated environment in
which to practice their security skills without risking
damage to the campus data centers or servers on the
Internet. Until recently, it was not cost effective to
provide students with access to real world examples
of IT infrastructure. There have been several reports
about the need to reform engineering and computer
science education (Wilcox, Wilcox, 2013), as well as
reports on the transformative power of early cur-
riculum redesign efforts in this field. As part of this
transformation, the gap between teaching methods
and practitioner’s skills can be addressed, at least in
part, through new teaching models such as flipped
classrooms (Bishop, Verleger, 2013; Sams, Bergmann,
Daniels, Bennet, Marshall, Arfstrom, 2014; Carranza,
DeCusatis, 2015) and increased academic partner-
ships, the latter having been shown to help foster
interdisciplinary education.

In this paper, we discuss a new undergraduate pro-
gram in cybersecurity for Computer Engineering
Technology students using the hybrid flipped class-
room approach. This program was recently piloted at
the New York City College of Technology (NYCCT),
which is part of the City University of New York
(CUNY) system, an environment with a significant
population of economically challenged, nontradi-
tional students. We have also implemented a variation
of this approach at Marist College, a private liberal
arts school in upstate New York. We discuss imple-
mentation of these approaches, including not only
technical skills training but also the promotion of
critical thinking, systems analysis, and interpersonal
skills. A version of the flipped classroom has proved to
be an effective way of engaging students in the study
of computer security. We present a detailed discus-
sion of the methods used, feedback from students and
faculty, and recommendations for broader adoption
of this approach.

CYBERSECURITY EDUCATION GOALS

We have implemented cybersecurity education pro-
grams at two major institutions, NYCCT and Marist
College. Marist is a private, co-educational, liberal arts
college founded in 1905 by the religious order of the
Marist Brothers and subsequently accredited by the
state of New York in 1929. Organizations such as the
Princeton Review and U.S. News and World Report
consistently rank Marist as among America’s best
colleges, best college values, and best regional schools
in the country. Recent enrollment includes about 5,000
undergraduates and 1,000 graduate students. Marist
maintains foreign study programs in 26 countries, and
over 50% of undergraduate students include some
form of international study program in their degree
program (significantly higher than the national aver-
age of about 7%). The School of Computer Science
and Mathematics is the largest and fastest growing
school within the college. In January 2013 the State
of New York approved a $3 million grant to establish
the Cloud Computing & Analytics Center (CCAC)
at Marist College. As part of this effort, Marist
has established a test bed for next generation cloud
computing research, and also hosts cloud workloads
for local businesses and government organizations.
Marist has recently begun a significant educational

Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education

 46 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

and research program devoted to cybersecurity,
including various types of security education and
training, developed in collaboration with the School
of Criminal Justice and various industry partners.

NYCCT, or City Tech, is the designated senior
college of technology within the 24-unit City
University of New York (CUNY), the largest urban
public university system in the nation. The National
Science Foundation ranks City Tech third nation-
ally in the number of associate-level science and
engineering degrees awarded to Black students,
23rd in degrees awarded to male students, and
48th in degrees awarded to women. Fall Semester
2013 student enrollment was 16,803, of whom 35%
attended part-time. The student body reported 138
different countries of origin. As an open access
institution, City Tech’s historic mission has been to
offer opportunities for educational advancement
to students regardless of financial circumstances or
prior academic achievement. The college is a feder-
ally designated Hispanic Serving Institution (HSI).
The primary goal for CUNY students concentrat-
ing on cybersecurity is to provide the background
necessary to enable them to become successful IT
practitioners, including information security admin-
istrators, architects, and testers, within the context
of a broader knowledge of Computer Engineering.
We are particularly interested in local job oppor-
tunities in the nearby Wall Street financial district,
where many employers are actively deploying cloud
computing environments and have a significant
interest in data security. There are a limited num-
ber of available hours in our curriculum that are
not previously dedicated to other requirements,
so it is important to prioritize key concepts and
skills for any new course offering. The Computer
Engineering curriculum at City Tech allows students
to earn a two year Associate of Applied Science
degree in Electro-Mechanical Technology. After
completing two years of additional coursework,
students can earn a Bachelor of Technology degree
in Computer Engineering Technology. These pro-
grams are Accreditation Board for Engineering and
Technology, Inc. (ABET) accredited. Cybersecurity
is included as an elective course component during
the junior/senior year.

The fundamental concepts which students should
understand after successfully completing a course of
study in cybersecurity include the following:

 � Framework and key concepts based on
established cybersecurity certifications

 � Hands-on experience in cyber
defense tools and techniques

 � Security governance and ethics

 � Penetration testing of data center
servers, storage, and networks

 � Implementing data confidentiality,
integrity, and authentication

 � Managing mobile device and wireless security

 � Programming security scripts and compiled
code based on open industry standards, and
contributing to open source software projects

 � Understanding recent use cases in information
security as a basis for future threat assessment

FLIPPED CLASSROOM APPROACH

The so-called flipped classroom is a pedagogical
model in which the typical lecture and homework ele-
ments of a course are reversed (Bishop, Verleger, 2013;
Sams et al. 2014). There is no single model for the
flipped classroom. The term is widely used to describe
almost any class structure that provides students with
resources (such as reading assignments) which are to
be studied prior to regular class meetings. The value
of this approach lies in re-purposing class time into
a workshop where students can ask questions about
the class resources and interact with their peers in
hands-on activities. Instructors function as coaches or
advisors, encouraging students to individually pursue
their interests and collaborate on class projects. This
approach draws from other educational concepts such
as active learning, student engagement, and hybrid
course design. Fully realized, this approach can
provide a radical change in the classroom dynamic.
A number of higher education institutions have
recently begun experimenting with the flipped class-
room approach, including Harvard, Penn State, and
Algonquin College (Sams et al. 2014).

In a traditional lecture, students often try to capture
what is being said at the same instant the speaker
makes a comment. Students can’t stop to reflect on

Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education

 47NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

what’s being said, and may miss significant points in
their haste to transcribe the instructor’s words. In a
flipped classroom, students control the rate at which
they absorb and reflect upon new materials. This may
be particularly effective for students with accessibility
concerns, or for whom English is a second language.
Devoting class time to conceptual understanding may
give instructors a better chance to observe and correct
student errors. Collaborative or group projects further
these goals by encouraging social interaction among
students, making it easier for students of varying skill
levels to support each other.

Of course, there are potential pitfalls associated with
a flipped model. An effective flip requires careful
preparation by the instructor, particularly in the early
part of the course. Instructors should also seek out
additional opportunities to interact with their stu-
dents outside the traditional classroom. Instructors
give up their traditional front-of-the-class position in
favor of a more collaborative and cooperative role.
Student roles change as well, as they become more
active participants in their own learning experience.
The flipped model gives students more opportunities
to experiment while placing more of the responsibility
of learning on the student. Students and instructors
may be uncomfortable in these new roles, or may not
appreciate the value of hands-on exercises. On the
other hand, when a flip is done well, it can shift the
priorities of the class from merely covering material to
working towards the achievement of deeper insights
which can be applied to new situations beyond the
scope of the current course examples. We will discuss
variations on the flipped classroom model which
attempt to preserve many of its strengths while over-
coming some of its known weaknesses.

INSTRUCTIONAL MATERIALS

Marist College offers an Introduction to
Cybersecurity course using the textbook Elementary
Information Security by R. Smith (second edition,
2015). While this is a large book for a one semester
course (over 16 chapters), it provides students with
ample opportunity to conduct independent reading
assignments. Marist also offers courses in Hacking
and Penetration Testing (based on S. Oriyano’s book,
second edition, 2015) and Mobile Security (based on J.
Dougherty’s book, second edition, 2014). Prerequisites

for these courses include classes such as Introduction
to Programming, Data Communication, and
Internetworking. The introductory course was offered
for the first time in fall 2015, with an enrollment of 30
students.

The required textbook for the NYCCT Cybersecurity
class is Penetration Testing: A Hands-On Introduction
to Hacking by G. Weidman (2014). This course does
not assume any prior knowledge of Windows, Linux,
or computer networking, although an introductory
programming course is prerequisite (such as C or
C++). As a supplemental text, the course also uses
Applied Information Security, a Hands-on Guide to
Information Security Software by R. Boyle and J.
Proudfoot (2014). The supplemental text is used pri-
marily for teaching Windows security and command
line management techniques. Currently the course is
offered as an elective for undergraduate junior and
senior students in computer engineering technology.
The course was offered for the first time in 2014 with
an enrollment of 22 students.

For computer security labs, it is essential to provide
students with an isolated, “sandbox” environment to
practice their hacking skills. There is always concern
that a student will decide to experiment on their own
using the campus network or the Internet, which
introduces liability issues for the college and instructor
as well as the potential for students to do significant
damage (either accidentally or intentionally). For the
Marist courses, labs are conducted in a secure cloud
computing environment and isolated from the rest of
the campus network. For the NYCCT course, students
perform labs on their own computers which are not
allowed to access the Internet from campus. At the
start of both courses, students are introduced to the
ethical conduct standards and practices published by
the IEEE and ACM, which they are expected to follow
throughout the course.

FLIPPED CLASSROOM ENVIRONMENT

NYCCT has implemented a more classic flipped
classroom approach following an initial period of
two weeks in which their computers are provisioned
with the required security environment tools. Students
receive instruction on how to set up a VMware virtual
environment which is used for the rest of the course,

Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education

 48 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

including a review of basic programming tech-
niques a general introduction to Linux and a specific
introduction to Kali Linux. The desktop version of
VMware Player, available for free on Windows and
Linux Operating Systems, is used. Kali Linux is a
Debian-based Linux distribution that comes with a
wide variety of pre-installed security tools that are
employed throughout the course. All of the students’
virtual machines (VMs) are placed on the same virtual
network using a bridged connection with static IP
addresses (the same connection as the host system
without the default network address translation nor-
mally enabled on Kali Linux). Kali Linux includes the
Ming C compiler and the GNU Compiler Collection
(GCC) for compiling code to run on Windows sys-
tems, as well as interpreters for Python and Pearl. (For
example, students can write exploits in Python shell
scripts for this course.) The course also uses other
free software not included in the Kali Linux distribu-
tion. This includes the open source version of the de
facto industry standard Metasploit Framework, which
makes it quick and easy to explore well over a thou-
sand known system vulnerabilities. Other software
used in this class includes the Hyperion encryption
program (to bypass antivirus software), Veil-Evasion
(which creates payload executables capable of bypass-
ing common antivirus solutions), Ettercap (a tool for
man-in-the-middle attacks), and Tenable Security’s
Nessus Home vulnerability scanner. Optionally,
Android SDK emulators are used for mobile security
testing. Students create custom-build target machines
to simulate vulnerabilities often found in real-world
systems using Windows 7, Windows 8, Ubuntu,
Fedora, or CentOS.

Following the initial setup period at NYCCT, teams
of between two and four students are expected to
complete weekly reading assignments and submit
completed lab reports. There are no fixed deadlines on
lab project submission, although students are provided
with a recommended timetable and are required to
complete nine labs during a 15 week semester (this
accounts for 50 % of their total grade). Class meet-
ings are used to discuss the material and help students
work their way through the curriculum. In this course,
students are encouraged to seek out the instructor
at any time using Skype video conferencing tools to
discuss their progress. In this way, student/instructor
interaction is not limited to weekly class meetings and
students can interact with the instructor individually

or in small groups. In addition to lab assignments,
students complete two case studies during the semes-
ter. Each case study is a short paper (typically five
pages, though there is no upper limit) on a topic
approved by the instructor which is of interest to the
student. Each case study is worth 10 % of the student’s
final grade. Finally, 30 % of the student’s final grade is
based on a research paper and oral presentation to the
class at the end of the semester. Research papers are
longer than case studies, typically 8 – 15 pages (though
again, there is no upper limit) and are accompanied
by a 15 – 30 minute oral presentation which is recorded
to provide feedback to the students. Examples of
student research paper topics include analysis of the
Heartbleed Exploit, cognitive security based on the
Turing Test, and computer forensics using the Kane
software package. Students benefit from hearing and
critiquing oral presentations on a variety of topics, so
the instructor assures that each group of students has
a unique subject to present.

Response to this new course and format has been
overwhelmingly positive. Initially a few students
expressed concern about the lack of traditional mid-
term and final exams. However, such concerns were
quickly offset by the student’s enthusiasm for this
topic and the flexibility to choose subjects which they
found interesting for their case studies and final proj-
ects. Student evaluation forms completed at the end of
the course contained many positive comments and not
a single complaint on the lack of conventional exams;
student write-in comments cited this course as among
the best classes they have ever taken. The initial class
of students has reported strong interest from industry
employers in this field and high placement rates for
the initial group of students. Students are encour-
aged to pursue novel, open source implementations or
contributions to the Kali Linux libraries and submit
their work for presentation at local professional con-
ferences. This not only provides excellent experience
for the students and promotes interpersonal com-
munication skills, but also exposes them to potential
employers in the region. Several students from this
class went on to present their research projects at
IEEE sponsored technical conferences (Carranza,
Carranza, 2014; Zafar, Carranza, 2014; Flores, Piure,
Carranza, 2014; Estrella, Carranza, DeCusatis, 2015).
Several students are also exploring collaborations
with other academic research institutions, including
the New York State Cloud Computing and Analytics

Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education

 49NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Center at Marist College. The instructor evaluation
reported higher than normal workload during the first
2 – 3 weeks of the course and assessed their workload
for the rest of the course as being consistent with a
traditional stand-up lecture/exam format.

HYBRID FLIPPED CLASSROOM
ENVIRONMENT

While the classic flipped classroom model has proven
successful during initial trials at NYCCT, there are
also some potential drawbacks. When introducing new
concepts such as encryption and public key cryptogra-
phy, students can benefit from a lecture which presents
the concepts from a point of view different from the
textbook, prompting the students to ask questions
which they may not have otherwise considered. This
includes making explicit connections with different
parts of the curriculum which might otherwise be
missed by students working independently. At Marist
College and NYCCT, we have explored a hybrid
approach which incorporates some of the independent
learning benefits from a fully flipped classroom with
the benefits of more traditional classroom lectures.

For example, a student with a background in Java
programming who independently studies the security
implications of buffer overflows may wonder if the
Java stack and heap are subject to overflow attacks.
The simple answer (which the student would find on
their own with a short review of online resources)
is that a memory managed language such as Java
mandates automatic array bounds checking, throws
an exception when a method attempts to access array
elements that are out of bounds, and then a try-catch
loop handles the exception, making buffer overflows
impossible. In many classrooms, this would be the end
of the discussion. However, this question provides a
teachable moment: the instructor should expand on
the original question and lead the student to use their
own Java experience to consider whether other cir-
cumstances might lead to security risks in Java array
handling. For example, if the Java Virtual Machine
(JVM) or Java Development Environment (JDE) is
written in another language such as C++, the JVM or
JDE might be vulnerable to buffer overflows. Calling
the Java Native Interface provides unmanaged pointer
access. Further, there may be errors in the code which
incorrectly handle the array-out-of-bounds exception;

if an attacker can trigger enough exceptions by enter-
ing invalid inputs, an effective denial of service attack
can be launched. In this manner, a prepared instructor
can introduce new concepts (such as attack vectors for
denial of service attacks) while reinforcing the text-
book answer on Java buffer overflow attacks. There
is value in preparing brief lecture notes along these
lines and introducing the topic during class even if the
students fail to ask the original question.

This example illustrates the benefits of a so-called
hybrid flipped classroom for cybersecurity educa-
tion. While students are still held responsible for
independent learning from the class resources, time
is allocated from each class period for a structured
lecture component. In addition to broadening the
student’s experience, it is prudent for instructors to
have some presentation materials prepared in advance
for common questions which arise on mathemati-
cally intensive subjects such as cryptoanalysis, key
wrapping, Diffe-Helmann, Riverst-Shamir-Adelman
(RSA), and other common elements of the cyber-
security curriculum. Reviewing these concepts from
a different point of view than the text book allows
students the opportunity to reinforce the new concepts
by making connections with other learning goals from
related coursework in programming or math.

Another important aspect of cybersecurity education
which lends itself to a hybrid approach is supple-
menting the class resources with recent examples
of real world security breaches. Students in the
Marist College program and at NYCCT are also
given hands-on experience with lab tools such as
FileZilla, WireShark, MetaSploit, OpenVAS (with
the GreenBone graphical user interface), Putty,
Netwitness Investigator, Zenmap, and tftpd64. In
a hybrid classroom, the instructor also guides the
student to trusted learning resources covering recent
cyber attacks (say, within the past three years).
Students are cautioned to always refer back to a
trusted reference such as the Common Vulnerabilities
and Exposures (CVE), rather than gathering all their
material from blogs or the popular media.

Understanding the implications of these attacks is
facilitated by instructor-led discussion, which resem-
bles a traditional lecture more than a flipped question
and answer session. In the Marist Cybersecurity
Curriculum, instructors heavily supplement learn-
ing resources with recent examples, often presenting

Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education

 50 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

a “hack of the week” during classroom time. This
reverses the traditional classroom flip, by presenting
students with the framework of an attack and chal-
lenging them to relate this specific example to their
understanding of basic security principles. Currently,
at NYCCT, students are involved with the physical
implementation of Local Area Networks (LANs)
using off the shelf components. The implementa-
tion consists of three separate server-based LANS:
Windows 2012 Server, Xen Server, and the VMware
ESXi sever. Each server will interconnect to four
or five clients running different Operating Systems
(Windows 7, Windows 8, Kali Linux, Ubuntu,
CentOS, etc.). Students experiment with several tools
that are contained in the Kali Linux distribution.
The physical LAN setup is in addition to the Virtual
Laboratory that each student has already implemented
to carry out their hacking skills in their own laptops
for the flexibility of being a mobile laboratory.

For example, the instructor might assign learning
resources from trusted sources discussing the many
recent hacks on automobile computer systems as an
introduction to security for the Internet of Things.
These resources might include a discussion of the
Control Area Network (CAN) and onboard diagnos-
tics systems mandated by the federal government on
all new vehicles since 1996. The instructor then leads
a discussion about which basic security principles
are violated by this design (for example, allowing low
priority systems such as the air conditioning controller
to access high priority systems such as the brakes is
an access privileges issue, which leads to a discussion
about least privileges, denial by default, and defense
in depth). In the hybrid approach used at Marist
College, students are also required to complete a
semester-long case study of their own in which they
must demonstrate how basic security principles may
be applied to recent high profile attacks. The instruc-
tor’s lectures provide examples of this technique
throughout the semester and attempt to teach students
a constructive way of thinking when they approach
security problems. Such a framework is critical in a
rapidly changing field such as cybersecurity, where
students will almost certainly encounter new hack-
ing techniques and exploits throughout their careers.
Instructor-led discussions on security fundamentals
supplements independent student hands-on lab

experiences so that a student will be equipped to deal
with new problems that don’t exactly match anything
previously documented in the learning resources.

An effective hybrid approach requires careful prepara-
tion by the instructor and provides leading questions
or supplemental materials which afford many oppor-
tunities to interact with the students. There are still
useful opportunities for lecture presentations, but
these are tempered with dynamic classroom environ-
ments in which the instructor and student explore
new concepts together and the instructor suggests
how these concepts may easily be incorporated into
a student’s existing body of knowledge. While the
roles of instructor and student are transformed from
the conventional lecture hall approach, the transi-
tion is less dramatic (and thus less stressful) for the
prepared student and instructor. Response to this
approach has been overwhelmingly position thus far,
with the initial class offering in fall 2015 significantly
exceeding enrollment expectations for a new course
offering. Student feedback is continuously monitored
throughout the semester, including anonymous polls
of student satisfaction with pair programming tech-
niques used in the labs. Students have also contributed
technical research papers based on their coursework
(Estrella et al. 2015; Cannistra et al. 2014). Future
work in this area will investigate the application of
predictive analytics to the student population in an
effort to improve early detection of at-risk students.

ACADEMIC AND
INDUSTRY COLLABORATION

Cybersecurity is well suited to a hands-on, practi-
tioner-oriented approach and benefits from a closer
interaction between educators and the IT admin-
istrators at their institutions. More meaningful
collaboration between different branches of academia,
or between academia and industry, would also benefit
students in this field. We have begun to explore col-
laborative opportunities in the region and plan to
continue developing future efforts in this area.

Our collaboration extends to the emerging service
industry perspective on networking and cybersecu-
rity. Faced with a growing gap in practitioners with
appropriate data center networking and security skills,
the Institute for Service Industry Professionals (ISSIP)

Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education

 51NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

has recently formed a series of working groups on
topics such as the Internet of Things and Software
Defined Networking (SDN). The mission of these
groups includes promoting education, assessing the
impact of new technologies on required knowledge
and skill sets, and providing guidance to a consortium
of academic and industry participants. These efforts
respond to recent reports from computer industry
analysis noting the lack of appropriate skills in these
areas and the need for education reform in an industry
where most of the networking-related jobs in 2014
did not exist just a few years ago (Sher-DeCusatis,
DeCusatis, 2014). The flipped and hybrid flipped class-
room approaches have implications for the network
service industry and for network education and certi-
fication programs. Preparing for traditional network
administrative and service roles involves complex, ven-
dor-specific practitioner certification exams which rely
on memorizing network device configuration com-
mands and learning how to implement hop-by-hop
distributed security. While these are valuable skills, the
broader body of knowledge which benefits cybersecu-
rity professionals has historically been de-emphasized
for networking service practitioners. The flipped and
hybrid flipped classroom approaches we are develop-
ing can be extended to include features of the rapidly
evolving network landscape including SDN, Network
Function Virtualization (NFV), and programmable
application programming interfaces (APIs) on routers,
firewalls, and long haul optical networking equipment.
Indeed, the ability to program network infrastructure
APIs is rapidly emerging as a key differentiating skill
for radio network architects and administrators and
will soon become a requirement for most employers.

Industry participation in the security curriculum has
also been facilitated by recent statewide efforts to
promote cloud computing as an economic growth
engine. The capabilities and educational benefits of
the CCAC have been described previously (Cannistra
et al. 2014; Sher-DeCustatis et al. 2014). In keeping
with their mission to promote the economic benefits
of this technology across the state, Marist has formed
academic partnerships with other public, private,
and Ivy League schools, including NYCCT as well
as industry partners including IBM, Brocade, Ciena,
Adva, and many others. The collaboration between
multiple industry sponsors and academic partners
provides a force multiplier which increases the impact
on a student’s education and is based on the National

Science Foundation’s Industry and University
Cooperative Research Center (IU/CRC) model. By
training students with cybersecurity principles that
are of interest to the lab’s corporate sponsors, this lab
provides a very high placement rate for students after
graduation. CUNY students have the opportunity to
collaborate with the CCAC and take advantage of
their facilities to further their interest in cloud security.
Marist is also developing a series of courses which
will lead to a degree specialization in cybersecurity,
leveraging the capabilities of the CCAC lab and its
academic partners. This nontraditional, federated
approach to technical education has yielded many
benefits for the institutions involved and provided
students with a richer undergraduate experience.
Students at each of the participating schools can take
advantage of the test bed at Marist College to conduct
undergraduate research projects or independent study
as well as developing a bridge to graduate studies.
Remote access to the Marist test bed is being enabled
for wireless devices such as smart phones and tablet
computers. The CCAC has an established record of
undergraduate student contributions to open source
software development projects, which are expected to
benefit from an increased focus on cloud security. By
making cybersecurity accessible in this way, we can
provide a much richer experience for undergraduate
students with basic programming skills and an interest
in data networking.

CONCLUSIONS AND FUTURE WORK

The industry-wide emphasis on cybersecurity and
a recognized shortage of security professionals has
driven a renewed focus on the cybersecurity educa-
tion process. We have investigated a novel approach
to cybersecurity education using variations on the
flipped classroom model. This program appears to be
particularly well suited to engaging nontraditional and
under-represented students because of its practical,
hands-on focus and engagement with other academic
and industry partners. The curriculum does not
require extensive prerequisites and can be deployed
quickly at very low startup cost in an isolated, inher-
ently secure student training environment. We have
begun to make this technology accessible to a stu-
dent population which includes a high percentage of
under-represented students, enabling them to pursue

Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education

 52 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

opportunities with leading financial companies and
other employers. Undergraduate students are capable
of making meaningful contributions to research in
this area due to the emphasis on open source soft-
ware and industry standard security protocols. In the
future, we plan to produce more instructional mate-
rials and explore the use of predictive analytics to
identify at-risk students.

REFERENCES CITED
Association for Computing Machinery (ACM). (n.d.). Toward curricular
guidelines for cybersecurity. Retrieved from https://www.acm.org/
education/TowardCurricularGuidelinesCybersec.pdf

Bishop, J., Verleger, M. (2013, June 23-26). The flipped
classroom: a survey of research. Address at 120th annual
ASEE Conference and Exposition, Atlanta, GA.

Cannistra, R., Carle, B., Johnson, M., Kapadia, J., Meath, Z., Miller, M.,
Young, D., DeCusatis, C., Bundy, T., Zussman, G., Bergman, K., Carranza,
A., Sher-DeCusatis, C., Pletch, A., Ransom, R. (2014). Enabling
autonomic provisioning in SDN cloud networks with NFV service
chaining. Proceedings of OFC Annual Meeting, San Francisco, CA.

Carranza, A., DeCusatis, C. (2015). Implementing a flipped classroom
for cybersecurity education. Proceedings of ASEE Northeast
Annual Meeting, Villanova University, Philadelphia, PA.

Carranza, H., Carranza, A. (2014). Cryptographic validity in network security.
Proceedings of IEEE Mid-Hudson Section Workshop on Advanced Technology
for Next Generation Computing, State University of New York, New Paltz, NY.

Cisco. (2014). Annual security report. Retrieved from https://www.
cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf.

Corno A. (2014). Evolution of the network engineer job role. Proceedings
of SDN Workshop, 2014 Annual Meeting of the Association of Technology
Management and Applied Engineering (ATMAE), St. Louis, MO.

Estrella, Y., Carranza, A., DeCusatis, C. (2015, July 29 – 31). Comparing
performance of physical and virtual environment penetration testing
using Kali Linux. Proceedings of Latin American and Caribbean
Consortium of Engineering Institutions (LACCEI) XIII Conference,
paper 0422, p. 20 – 27, Santo Domingo, Dominican Republic.

Exec. Order No. 13636 (2013, February). Retrieved from https://
www.whitehouse.gov/the-press-office/2013/02/12/executive-
order-improving-critical-infrastructure-cybersecurity

Florez, A., Piure, D., Carranza, A. (2014, November 6). Cloudstack
and Openstack battle for network storage. Proceedings of IEEE
Mid-Hudson Section Workshop on Advanced Technology for Next
Generation Computing, State University of New York, New Paltz, NY.

IT Career Finder. (2014 – 15). Security jobs report.
Retrieved from http://www.itcareerfinder.com

National Initiative for Cybersecurity Careers and Studies.
(2015). Retrieved from http://niccs.us-cert.gov/

The National Initiative for Cybersecurity Education. (2015).
Retrieved from http://csrc.nist.gov/nice/index.htm

Obama, B. (2015, February). Remarks by the President at the
Cybersecurity and Consumer Protection Summit. Retrieved from
https://www.whitehouse.gov/the-press-office/2015/02/13/remarks-
president-cybersecurity-and-consumer-protection-summit

Sams, A., Bergmann, J., Daniels, K., Bennet, B., Marshall, H.,
Arfstrom, K. (2014). What is flipped learning: the four pillars of f-l-i-p.
Retrieved from www.flippedlearning.org/cms/lib07/VA01923112/
Centricity/Domain/46/FLIP_handout_FNL_Web.pdf

Sher-DeCusatis, C., DeCusatis, C. (2014). Developing a software
defined networking curriculum through industry partnership.
Proceedings of ASEE Annual Meeting, Hartford, CT.

Presidential Policy Directive. (2015). Critical infrastructure
security and resilience. Retrieved from https://www.whitehouse.
gov/the-press-office/2013/02/12/presidential-policy-
directive-critical-infrastructure-security-and-resil

White House. (2015). The Comprehensive National Cybersecurity
Initiative. Retrieved from https://www.whitehouse.gov/
issues/foreign-policy/cybersecurity/national-initiative

Wilcox, L.C., Wilcox, M.S. (2013, April 26 – 28). A review and evaluation of
engineering education in transition. Proceedings of the IEEE 8th International
Conference on Computer Science and Education (ICCSE), Sri Lanka.

Zafar, S., Carranza, A. (2014). Penetration testing using Kali Linux
within VMware virtual networks. Proceedings of the IEEE Mid-Hudson
Section Workshop on Advanced Technology for Next Generation
Computing, State University of New York, New Paltz, NY.

AUTHORS

Aparicio Carranza (acarranza@citytech.cuny.edu) is an
associate professor in the Department of Computer
Engineering Technology, New York City College of
Technology (NYCCT), of the City University of New
York (CUNY), Brooklyn, New York, and adjunct
instructor at State University of New York (SUNY)
at New Paltz. His research involves cybersecurity and
technology education, Software Defined Networking
(SDN), virtualization and cloud computing, and
Linux clustering. He serves as an advisory council to
four colleges (Vaughn College of Aeronautics and
Technology, New York; DeVry University, New York;
Technical Career Institute College of Technology,
New York; and SUNY Rockland Community
College) and was chair of his department from 2007
to 2013. Dr. Carranza earned a doctorate in elec-
trical engineering from The Graduate School and
University Center — CUNY; Bachelor of Science in

Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education

 53NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Electrical Engineering and Master of Science in
Electrical Engineering from The City College of New
York — CUNY; and an Associate of Applied Science
in Electronics Circuits and Systems from Technical
Career Institutes of New York. Dr. Carranza joined
the Computer Engineering Technology Department
of New York City College of Technology as full-time
faculty in fall 2000. For several years he worked as an
engineer and scientist at the Development Division
of IBM Corporation in Poughkeepsie, New York. He
teaches analog electronics, digital electronics, several
programming languages (including MATLAB, C,
C++, and Java, Python), engineering analysis, data
communications, engineering design and other
related courses.

Casimer DeCusatis (Casimer.DeCusatis@marist.edu)
is an assistant professor in the Department of
Computer Science and Mathematics, Marist College,
Poughkeepsie, New York. His research with the New
York State Cloud Computing and Analytics Center
includes optical data networks, cybersecurity, and
software-defined data centers. An IBM Distinguished
Engineer Emeritus, he is also an IBM Master Inventor
with over 150 patents and the recipient of several
industry awards, including the Institute of Electrical
and Electronics Engineers (IEEE) Kiyo Tomiyasu
Award, the Sigma Xi Walston Chubb Award for
Innovation, the EDN Innovator of the Year Award,
the Mensa Research Foundation Copper Black Award
for Creative Achievement, the Penn State Outstanding
Scholar Alumnus Award and Mark Luchinsky
Memorial Lecture, and the IEEE/Eta Kappa Nu
(HKN) Outstanding Young Electrical Engineer
Award (including a citation from the President of the
United States and an American flag flown in his honor
over the United States Capitol). He is co-author of
more than 200 technical papers, book chapters, and
encyclopedia articles, a 2015 Cisco Distinguished
Speaker, and editor of the Handbook of Fiber Optic
Data Communication (now in its fourth edition).
Dr. DeCusatis received his master’s and doctoral
degrees from Rensselaer Polytechnic Institute, (Troy,
New York), in 1988 and 1990, respectively, and his
bachelor’s degree in the Engineering Science Honors

Program from the Pennsylvania State University
(University Park), in 1986. He is a Fellow of the
IEEE, Optical Society of America, and SPIE (the
international optical engineering society), a member
of the Order of the Engineer, Tau Beta Pi, Eta Kappa
Nu, and various other professional organizations and
honor societies.

Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows MalwareHybrid Implementation of Flipped Classroom Approach to Cybersecurity Education

 54 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Malware Fingerprinting: Analysis of Tool Marks and
Other Characteristics of Windows Malware

Sean McVey

ABSTRACT

Trojans and other malware are common tools of
cyber espionage. As such, it is useful to analyze
attack malware for not only its method of opera-
tion but also for indicators of its origin. This paper
will introduce the reader to techniques useful in
the attribution or attempted attribution of Windows
malware to its author or authors. Malware families
will be discussed, as will the analysis of strings,
Dynamic Link Libraries (DLLs), and language indi-
cators. Analysis of command and control (C2)
schemes will also be covered.

INTRODUCTION

Much has been published about the detection of mal-
ware and the function of different types of malware
but little has been published on malware attribution.
This said, malware attribution, which is the process
of identifying the malware author, is commonly
conducted by researchers and analysts in academic,
private, and government organizations. Attribution
is critical in stopping bad actors (criminal and nation
state) and can serve as a possible deterrent to other
would-be attackers. Unfortunately, attribution can
be elusive, and even the best attempts can fail or
worse misattribute an attack. Because of this uncer-
tainty, many researchers stop short of providing
attribution outright. Instead, they hint at a source
or provide useful clues that allow the reader to draw
their own conclusions.

Independent of who is doing the research, malware
analysis comes down to looking for tool marks (the
information left behind in the process of creating mal-
ware), analysis of code behavior, and analysis of the
overall modes of action of the code. These three areas
can indicate relationships between distinct pieces of
code, and can point to an individual author or threat
group. This paper will discuss the types of information
found in malware that can be useful in attribution.

METHODS OF MALWARE ANALYSIS

Malware analysis can be broken down into two broad
categories: static analysis and dynamic analysis. Static
analysis involves “examining and analyzing the con-
tents of the file without launching it” while dynamic
analysis involves “loading the file onto a testbed
system [virtual machine or otherwise] and launching
it, while monitoring it to determine what effects it has
on the system” (Carvey, 2005). Static and dynamic
analysis can be further broken down into basic and
advanced techniques as described below.

Static Analysis

 � Basic Static Analysis

Basic static analysis consists of examining the
executable file [for human readable stings of text]
without viewing the actual [code] instructions.
Basic static analysis can confirm whether a file is
malicious, provide information about its function-
ality … basic static analysis is straightforward and
can be quick, but it’s largely ineffective against
sophisticated malware, and it can miss important
behaviors (Sikorski & Honig, 2012).

Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware

 55NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education

 � Advanced Static Analysis

Advanced static analysis consists of reverse-
engineering the malware’s internals by loading
the executable into a disassembler and looking
at the program instructions in order to discover
what the program does. The instructions
are executed by the CPU, so advanced static
analysis tells you exactly what the program does.
However, advanced static analysis has a steeper
learning curve than basic static analysis and
requires specialized knowledge of disassembly,
code constructs, and Windows operating system
concepts (Sikorski & Honig, 2012).

Dynamic Analysis

 � Basic Dynamic Analysis

Basic dynamic analysis techniques involve run-
ning the malware and observing its behavior
on the system in order to remove the infection,
produce effective signatures, or both … Like basic
static analysis techniques, basic dynamic analysis
techniques can be used by most people without
deep programming knowledge, but they won’t be
effective with all malware and can miss important
functionality (Sikorski & Honig, 2012).

 � Advanced Dynamic Analysis

Advanced dynamic analysis uses a debugger to
examine the internal state of a running malicious
executable. [Using] advanced dynamic analysis
techniques provide another way to extract detailed
information from an executable. These techniques
are most useful when you’re trying to obtain infor-
mation that is difficult to gather with the other
techniques (Sikorski & Honig, 2012).

Within these four categories, there is a wide range of
analysis approaches, from monitoring the changes
made by the malware code to analysis of the malware
code itself. Code analysis, such as disassembly of
the code to its assembly language, “a programming

language that is one step away from machine lan-
guage”, is considered the most complex technique
(PC Magazine, n.d.). Advanced techniques provide
the most detailed picture of the capabilities and func-
tion of the malware code but they take more skill
and time to do correctly. On the other hand, websites
such as Virustotal.com and Anubis can offer the
average user a quick analysis of malware code, but
may not catch everything. In order to gain a com-
plete picture of the malware (the behavior, mode of
action, author’s style, and tool marks), it’s likely that
more than one technique will be needed. Although,
basic static analysis such as the examination of
strings (human readable text found in the code) may
at times hold the smoking gun.

TOOL MARKS AND THE
AUTHOR’S SIGNATURE

In traditional forensics, tool marks are defined as “fea-
tures imparted on an object by the contact and force
exerted from a tool” (Hernandez, 2011). In malware
analysis, tool marks refers to data found in the code,
which not only indicate how the code was created, but
when it was created and much more. Tool marks can
include file names and paths, complier specific informa-
tion, and other data intentionally and unintentionally
left behind in the code. Tool marks can be thought to
fall into three categories: tool marks related to format
and structure of the code itself, tool marks related to
creation and debugging of the code, and finally, tool
marks related to programmer chosen values. This last
category — programmer chosen values — includes file
names, registry keys, “shout-outs” to other hackers,
and other style choices. These programmer specific
choices can be considered the signature of the author.
Common tool marks are listed in Table 1 below.

Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware

 56 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

TOOL MARK TYPE SOURCE

BUILD DATE PE Data

BUILD VERSION PE Data

CHARACTER SET (LANGUAGE) PE Data

CODE STYLE Author

COMMENTS PE Data

FILE AND FOLDER NAMES Author

FUNCTION CALL (SYMBOL) USE Code & Author

LANGUAGE CODE PE Data

MUTEX VALUE Author

NAME MANGLING Code

PACKING PE Data

PROGRAM DATABASE (PDB)
BUILD PATH

Code & Author

REGISTRY KEY NAMES Author

RICH SIGNATURE Code

SERVICE NAMES Author

UNIQUE STRINGS Author

In Windows systems, the format used for executable
files is known as the Portable Executable (PE) format
(Pietrek, 2002). These PE files are structured and
contain both the executable code, as well as metadata
about the code itself. PE metadata can include a range
of information such as the date the file was created,
the date the code was compiled, version informa-
tion (some malware authors track code versions),
comments, file packing, and information about the
language settings of the system it was compiled on
(Microsoft, 2013). For example, an analysis of the PE
information of Memory Monitor, an earlier version of
the malware used in the Target data breach, indicates
that it was written using Russian language settings
and was created in March of 2013. Figure 1 includes a
representation of Memory Monitor’s PE information.

FIGURE 1:

MEMORY MONITOR PORTABLE
EXECUTABLE (PE) INFORMATION

Notice in Figure 1, the company name and copyright
information have been set by the malware author
to Microsoft in an effort to make the program seem
legitimate.

PE files created using Microsoft’s Visual Studio pro-
gramming environment contain a signature that can be
used to track a piece of code to a given machine. The
rich signature is not part of the PE metadata; instead
it is placed in the executable when it is compiled. The
Rich Signature does not contain personally indefinable
information per se, but does contain “compiler id’s
which are gathered by the linker” and “contain[s] the

TABLE 1: USEFUL TOOL MARKS

Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware

 57NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

version number of the compiler” itself (“Things They
Didn’t Tell You,” 2004). While the long-term stability of
this signature is questionable, it serves as distinct signa-
ture of the machine used to compile the code. Memory
Monitor’s rich signature as decoded by Daniel Pistelli’s
PE Insider tool is depicted in Figure 2.

 FIGURE 2: MEMORY MONITOR RICH SIGNATURE

Depending on the programming language the code is
written in, variable names and other text may be put
through a process called “name mangling” as part of
the compiling process. Name mangling helps to avoid

“name collisions, [and allows for] name overload-
ing, and type checking” (IECC.com, 1999). Name
mangling can be used for security through obscurity
and is an important aspect of code obfuscators.
Name mangling is also highly “compiler dependent”

(Kefallonitis, 2007). Because each compiler mangles
names differently yet predictably, analysis of the code
can indicate the language the code was written in and
the type of compiler used—useful information when
profiling a programmer. Examining symbols and the
Dynamic Link Libraries (DLL) used can further cre-
ate a picture of the programmer’s environment. Usage
of specific DLLs can indicate the version of Visual
Studio (Figure 3) or other development environments
used to create the code.

Program database (PDB) files were introduced along
with Visual C++ version 1.0 to hold debug informa-
tion for programs written in Visual Studio (Microsoft,
2005). PDB paths are tool marks left over from the
debugging process in Visual Studio. PDB paths won’t
exist in release code or code not written in Visual
Studio. When found these paths point to the loca-
tion of the code on the malware writer’s system at
the time it was compiled. Analysis of PDB paths is
common because the uniqueness of these paths serve
as a good fingerprint and can indicate the program-
mer’s name for the malware. At times the PDB path
can indicate the nature of the malware itself. Analysis

of the Memory Monitor code (Figure 4) finds that
at the time it was compiled its author had it saved as
mmon in x:\Programming\C++\ 2011.08\ScanMemory\
Debug. In this case, “Scan Memory” is a clue to its
intended function.

DLLS USED IN
VISUAL C++ 5.0

DLLS USED IN
VISUAL C++ 6.0

DLLS USED IN
VISUAL C++
.NET 2002

DLLS USED IN
VISUAL C++
.NET 2003

DLLS USED IN
VISUAL C++

2005

DLLS USED IN
VISUAL C++

2008

MSVCRT.DLL MSVCRT.DLL MSVCR70.DLL MSVCR71.DLL MSVCR80.DLL MSVCR90.DLL

MSVCRTD.DLL MSVCRTD.DLL MSVCR70D.DLL MSVCR71D.DLL MSVCR80D.DLL MSVCR90D.DLL

MSVCP50.DLL MSVCP60.DLL MSVCP70.DLL MSVCP71.DLL MSVCP80.DLL MSVCP90.DLL

MSVCP50D.DLL MSVCP60D.DLL MSVCP70D.DLL MSVCP71D.DLL MSVCP80D.DLL MSVCP90D.DLL

MSVCIRT.DLL MSVCIRT.DLL

MSVCIRTD.DLL MSVCIRTD.DLL

FIGURE 3: MICROSOFT VISUAL C++ DLLS BY VERSION (MICROSOFT, 2008)

Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware

 58 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Mutual Exclusion, or Mutex, values are a common
way to identify code. Mutex values are a normal part
of many applications that serve to prevent “simulta-
neous access to a shared resource” by running code
(Janssen, n.d.). Sometimes referred to as mutants,
malware uses Mutex values to manage process threads
and prevent re-infecting a machine. Mutex values
are meant to be unique by design and are set by the
programmer; because of this they can tie versions of
malware together into a family if consistently used.
Mutex values have also been used to attribute malware
back to a particular author when reused in attribut-
able code (Hoglund, 2010).

How the malware itself is written can be used to
profile the programmer. Use of legacy or outdated
system and function calls can, for example, hint at the
age and experience of a programmer (Spafford &
Weeber, 1992, p. 7). The overall structure, complexity,
and stability—for example, are there bugs?—of the
malware can indicate the knowledge and experience of
the malware author as well (Spafford & Weeber, 1992).
Filenames, Registry key names, service names, as well
as arbitrary values such as sleep times and other
unique constants may all serve to create a fingerprint.
If analyzed correctly, strings of almost any type could

possibly be used to weave malware into families and
connect author to attributed code. Analysis of the
Memory Monitor malware uncovers a number of
strings, including a Registry key and application name
(Figure 5). Both are useful in detection and
attribution.

Malware writers will often times try to obfuscate
and prevent analysis of their code. The way in which
malware code is obfuscated along with the presence
of other anti-forensic techniques may be particular to
a specific programmer when taken together, and the
complexity of the protection may speak to the knowl-
edge and skill of the programmer. Some common
obfuscation and anti-forensic techniques are captured
in Figure 6.

FIGURE 5:
MEMORY MONITOR REGISTRY KEY AND SERVICE NAME

NAME DESCRIPTION TYPE

ANTI-DISASSEMBLY & DEBUGGING Techniques used to slow or prevent analysis of the code Anti-forensic

BASE64 ENCODING
Represents binary data using upper and lowercase letters
as well as numbers

Obfuscation

PACKING Compression used to obscure the code Obfuscation

VITALIZATION DETECTION Detects when the code is operating in a virtual machine Anti-forensic

XOR Simple binary operation that uses a set key to Obscure the data Obfuscation

FIGURE 6: OBFUSCATION AND ANTI-FORENSICS TECHNIQUES

FIGURE 4: PDB PROJECT PATH

Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware

 59NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Tool marks vary in complexity. Some may only be
visible using advanced techniques while others such as
file paths, symbol names, and PDB paths may be
visible using basic static analysis. While we have
covered some common tool marks there are many
more not mentioned here. By using these tool marks
and others found through static and dynamic analysis
the attribution process can begin.

CODE BEHAVIOR

The behavior of malware, what it does, what it’s
after, and its complexity are factors that should be
taken into account as part of the attribution process.
Information stealing malware, for example, is likely
to have a different motive behind it than a banking
trojan or adware and the likely motives should be
taken into account when building an overall picture of
the attacker.

Analysis of the complexity of malware code, as well
as the knowledge needed for it to operate, is also a
useful point of analysis. A good example of this is
the Stuxnet malware, which exploited “four 0-day
vulnerabilities, compromise[d] two digital certificates,
and inject[ed] code into industrial control systems and
[hid] the code from the operator” (Falliere, Murchu,
& Chien, 2011, p. 55). Stuxnet is a highly complex,
targeted threat designed to attack a specific target,
likely in Iran (Falliere, Murchu, & Chien, 2011, p. 2).
The complexity, behavior, and targeted nature of the
Stuxnet malware make it likely that the group behind
it had access to intelligence and a wide range of tech-
nical resources. Such a profile indicates that Stuxnet
was created by a state or state-funded group rather
than a lone hacker or cybercrime group. In contrast,
malware such as Memory Monitor is designed to steal
credit card information, and while budget deficits
might loom large it is likely that a cyber criminal or
gang—not a nation state—is behind it.

Malware can also be examined to reveal individual
behaviors of the code. Examination of behavioral
traits instead of signatures often identifies suspicious
code even if it had not previously been identified, as
in the case of 0-day threats. Analysis of our example

malware with Responder Pro, a malware analysis tool,
shows a number of suspicious traits including read-
ing the memory space of other processes and possible
keystroke interception (Figure 7). Automated tools
greatly aid in analysis of behavioral traits but are not
necessary.

MODE OF ACTION

The last area of examination when attempting attri-
bution is analysis of the way the malware infects its
target, communicates with the outside world, and
otherwise operates. Methods of delivery, exploitation,
and command and control (C2) differ widely from
malware to malware but may be similar between mal-
ware in the same family or even the same threat group.

Delivery

Malware can be delivered to its victim in a number
of ways. Seemingly harmless files can be infected
with malware to create trojans waiting to be down-
loaded off the web, while others may take advantage
of an infected web server to propagate malware
code. Delivery of the malware need not be complex

FIGURE 7: SAMPLE OF MEMORY MONITOR CODE TRAITS

Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware

 60 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

in order to be effective. Analysis of major advanced
persistent threat (APT) campaigns, including APT1
(Mandiant, 2013), Lurid Downloader (Villeneuve &
Sancho, 2011), and GhostNet (Information Warfare
Monitor, 2009) illustrate that sending targeted e-mails
(spear-phishing) is a favorite technique of APT actors.
Analysis of the delivery method, including related
spear-phishing e-mails or trojanized files, provide valu-
able clues about the source and nature of the attack.

Exploitation

Short of the victim being tricked or “social-engi-
neered” into running malware code, malware often
exploits a weakness in the operating system or com-
monly used application such as web browsers and
PDF viewers in order to infect a system. The exploit or
exploits used can be a point of attribution. As noted
earlier, Stuxnet exploited not one but four 0-day, i.e.
previously unknown, vulnerabilities. Again, this speaks
to the skill and resources of the Stuxnet authors. The
application exploited can also provide clues to both the
target and likely source of an attack. Malware target-
ing an application popular in a given region or with
a group, such as QQ chat popular in China, may hint
at groups interested in targeting that population (P.
Breuer, personal communication, February 21, 2014).

Command and Control

Understanding how malware communicates to the
outside world is a critical factor in malware attribu-
tion. IP addresses and domain names may be obscured
but when identified they can point to command and
control (C2) servers and a responsible party. Further,
threat actors may reuse the same “infrastructure” of
servers and hop-points, therefore identifying the C2
system may speed attribution (P. Breuer, personal com-
munication, February 21, 2014). Analysis of malware
C2 systems can tell researchers not only about the
threat actor, but can also help identify victims. Analysis
of the command and control system of the Koobface
malware allowed researchers to understand how the

botnet worked and even identify payments made to
people involved (Villeneuve, 2010). As illustrated
in Figure 8 and Figure 9, in analyzing our sample
malware, a much simpler line of communication is
identified. An IP address (109.234.159.254) as well as
a Web address (ree3.7ci.ru) are easily found.

ANALYSIS AND ATTRIBUTION

Once the tool marks, code behaviors, and mode
of action are collected, a fingerprint of its author
becomes apparent. Once gathered, open-source
intelligence (OSINT) research can begin. Code
repositories, hacker forums, and other websites
can be searched for unique data found in the code.
Analysis of the malware’s C2 structure can identify
servers and communication methods, which in turn
may reveal additional clues to the attacker’s identity.

With this in mind let’s take a look at the details of
our example malware to see what we have learned in
Figure 10.

FIGURE 9: WEB ADDRESS FOUND IN MEMORY MONITOR

FIGURE 8: IP ADDRESS FOUND IN MEMORY MONITOR

Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware

 61NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

In this instance the method of infection for Memory
Monitor is unknown. It was likely copied onto the
target system by the attacker since Memory Monitor
is not known to be viral or use an exploit to infect
its target. In reviewing the information gathered in
Figure 10, it is clear that the code was likely written
by a Russian speaker on a Windows system set to use
Cyrillic. Analyses of the IP address tracks back to a
Russian ISP as well, and is described in Figure 11.

Analysis of the web address “ree4.7ci.ru” leads to
further information about the malware writer himself,
reported to be a Russian 17-year-old with ties to cyber
criminals. Attribution achieved.

Memory Monitor is related to the malware used in
the Target stores breach in late 2013. As a fairly well
known piece of malware, much has been written about
it and its author making attribution unusually easy.
It is also a fairly simple piece of code with distinct
strings and few anti-forensic features. In reality attri-
bution isn’t usually this simple. Many hours of static
and dynamic analysis may be needed to find useful
tool marks and puzzle out how the malware functions.

CONCLUSION

It must be said that it is almost impossible to know
with 100% certainty who is really behind an attack
using just malware analysis. Malware code can be
stolen, accounts hijacked, and tool marks can be
faked—there is always the possibility of deliberate
misdirection and misattribution. That said, author
attribution is possible. By building a careful chain
of evidence out of tool marks and other malware
attributes, it is possible to link malware to its source
within a reasonable amount of certainty. Where pos-
sible, other intelligence gathering methods such as
signals intelligence (SIGINT) and even human intel-
ligence (HUMINT) can add precision and certainty to
attribution.

FIGURE 11: IP ADDRESS INFORMATION

TYPE VALUE

MALWARE NAME Memory monitor

SERVICE CREATED svhst.exe

METHOD OF PERSISTENCE Registry Key

REGISTRY KEY DETAIL HKLM\Software\Microsoft\Windows\CurrentVersion\Run\videodrv

PROJECT PATH x:\Programming\C++ 2011.08\ScanMemory\Debug\mmon.pdb

CREATION DATE 3/23/13 6:18

VERSION 1.3.2.7

LANGUAGE CODE Russian

CHARACTER SET Windows, Cyrillic

WEB ADDRESS ree4.7ci.ru

IP ADDRESS 109.234.159.254

FIGURE 10: COLLECTED TOOL MARK AND C2 INFORMATION

Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware

 62 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

REFERENCES CITED
Carvey, H. (2005). Malware analysis for windows
administrators. Digital Investigation, 19–22.

Falliere, N., Murchu, L. O., & Chien, E. (2011). W32.Stuxnet
Dossier. Symantec Security Response. Symantec.

Harvey, P. (2011, July 12). EXE Tags. Retrieved from
http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/EXE.html

Hernandez, G. A. (2011, September 23). Firearms, Tool Marks, and Other
Impressions — Keynote_Hernandez.pdf. Retrieved from
http://www.dtic.mil/ndia/2011ballistics/Keynote_Hernandez.pdf

Hoglund, G. (2010). Malware Attribution: Tracking Cyber Spies &
Digital Criminals. Blackhat Vegas 2010. Las Vegas, NV: Blackhat.

IECC.com. (1999, June 30). Symbol management. Retrieved
from http://www.iecc.com/linker/linker05.html.

Information Warfare Monitor. (2009). Tracking GhostNet. The Munk
Centre for International Studies. Toronto: Information Warfar Monitor.

Janssen, C. (n.d.). What is Mutual Exclusion (Mutex)?
[Definition]. Techopedia. Retrieved from http://www.techopedia.
com/definition/25629/mutual-exclusion-mutex.

Kefallonitis, F. (2007, October 29). Name Mangling Demystified.
Retrieved from http://www.int0x80.gr/papers/name_mangling.pdf.

Mandiant. (2013). APT1: Exposing One of China’s Cyber Espionage
Units. Retrieved from http://intelreport.mandiant.com/.

Microsoft. (2005, August 5). Description of the .PDB files and of the
.DBG files. Retrieved from http://support.microsoft.com/kb/121366.

Microsoft. (2008, March 19). Description of the default
C and C++ libraries ... Retrieved from support.microsoft.
com: http://support.microsoft.com/kb/154753.

Microsoft. (2013, February 6). Microsoft PE and COFF Specification. Retrieved
from http://msdn.microsoft.com/library/windows/hardware/gg463125.

PC Magazine. (n.d.). Assembly Language [Definition].
PC Magazine Encyclopedia. Retrived from http://www.pcmag.
com/encyclopedia/term/38047/assembly-language.

Pietrek, M. (2002, February). Inside Windows: An in-depth look into
the Win32 portable executable file format. MSDN Magazine. Retrieved
http://msdn.microsoft.com/en-us/magazine/cc301805.aspx.

Pistelli, D. (2010, November 11). Microsoft’s Rich Signature. Retrieved
from ntcore.com: http://ntcore.com/Files/richsign.htm.

Sikorski, M., & Honig, A. (2012). Practical malware analysis.
San Francisco: No Starch Press.

Spafford, E. H., & Weeber, S. A. (1992). Software forensics: Can
we track code to its authors? Purdue University, Department
of Computer Science. West Lafayette: Purdue University.

Things they didn’t tell you about ms link and the pe header. (2004, July
7). Retrieved from http://spth.virii.lu/29a8/Articles/29A-8.009.txt.

Villeneuve, N. (2010). Koobface: Inside a crimeware network.
Infoware Monitor, Munk School of Global Afairs. Infowar Monitor.

Villeneuve, N., & Sancho, D. (2011). The “Lurid”
Downloader. TrendLabs. Trend Micro.

AUTHORS

Sean B. McVey (sean@everyday-data.com), EnCE, CISSP,
is a Maryland-based incident response team lead
and forensics subject matter expert at cybersecurity
firm Antietam Technologies. Currently contracted to
the U.S. Department of Energy, Mr. McVey is also a
former instructor at the Defense Cyber Investigations
Training Academy (DCITA) where he researched
mobile device and Macintosh forensics. With over 10
years in the field of digital forensics, he holds a Master
of Science in cybersecurity from Utica College and a
Bachelor of Science in information technology from
the Rochester Institute of Technology.

Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware

 63NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command SystemMalware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware

 64 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Strengthening Cyber Incident Response Capabilities
Through Education and Training in the Incident
Command System

Austen D. Givens

Introduction

An oil pipeline running through central Siberia
exploded one night in October 1982, sending an
enormous fireball into the sky (National Security
Archive, 2013). The blast was so powerful that it
released the energy equivalent to that of a small
atomic bomb (National Security Archive, 2013).
The Central Intelligence Agency (CIA), in what may
be the world’s first-ever example of cyber sabotage,
made the pipeline explode by introducing flawed
computer code into the pipeline’s control system,
causing its components to malfunction (National
Security Archive, 2013). This attack took advan-
tage of electronic vulnerabilities in the pipeline’s
Supervisory Control and Data Acquisition (SCADA)
systems, which regulated the movement of turbines
in the pipeline that kept oil flowing from one point
to another (National Security Archive, 2013). The
CIA was able to exploit these vulnerabilities with the
flawed computer code, causing the SCADA system
to malfunction, ultimately resulting in the pipeline
explosion.

Twenty eight years after the Siberian pipeline
explosion, the U.S. government again used flawed
computer code to damage physical infrastructure—
this time, in Iran. In June 2010 Iranian nuclear
officials discovered that many of the centrifuges
that they were using to purify uranium had been
badly damaged (Fildes, 2010). The U.S. and Israeli
governments, which believed that Iran was using the
uranium to build nuclear weapons, co-wrote and
introduced a virus called Stuxnet into the centri-
fuge control systems (Fildes, 2010; Ferran & Radia,
2013). This highly sophisticated computer virus
caused the centrifuges deliberately to spin out of
control, breaking them (Fildes, 2010). The damage

ABSTRACT

Supervisory Control and Data Acquisition
(SCADA) systems control innumerable industrial
processes that affect large segments of U.S.
critical infrastructure, from regulating the flow
of water through dams to calibrating the elec-
trical currents in power substations located in
residential neighborhoods. Historical evidence
demonstrates that electronic attacks on SCADA
systems can physically damage them. This can
trigger consequences that must be simultane-
ously addressed by Computer Security Incident
Response Teams (CSIRTs) and traditional first
responders. This article advances a two-part argu-
ment: first, that the Incident Command System
(ICS) offers a compelling means to strengthen
cyber incident responses by integrating CSIRTs
and first responders involved in SCADA incidents
into a cohesive organizational structure; and sec-
ond, that cybersecurity curricula in academic and
professional training settings should therefore
incorporate ICS education in order to increase the
probability of effective incident responses involv-
ing CSIRTs and first responders in the future.

Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System

 65NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware

was so widespread that one expert speculated that
Stuxnet set back the progress of the Iranian nuclear
program by two years (Katz, 2010). The Iranian
government, however, denied that the damage had
any serious impact on its nuclear ambitions (Warrick,
2011). Outside analysis by the Royal United Services
Institute, a London-based defense think tank, con-
firms that Stuxnet’s true long-term impact on the
Iranian nuclear program was negligible (Barzashka,
2010, pp. 52–54).

The Siberian pipeline explosion and the Stuxnet
virus demonstrate that attacks on SCADA systems
can be used to cause physical damage to infrastruc-
ture. The risk of this type of damage is of increasing
concern to U.S. federal officials. The Department of
Homeland Security (DHS) recently ran a worldwide
exercise to test response coordination to just such an
incident (DHS, 2014). The need to prepare for physi-
cal infrastructure damage caused by SCADA system
attacks gives rise to a fundamental question about
cyber incident response capabilities in the United
States: how are computer security experts, tasked with
responding to the virtual effects of cyber attacks, and
traditional first responders, who attend to the physi-
cal consequences of these incidents, to integrate their
actions effectively?

This article argues that the Incident Command
System (ICS), which has for years been used to man-
age conventional disasters, provides a ready-made
and effective organizational structure for computer
security experts and traditional first responders to
integrate their responses to SCADA system attacks.
Moreover, this article makes the case that since
ICS can be used to blend the response actions of
computer security experts and first responders, ICS
training should be an integral part of cybersecu-
rity curricula, precisely because of the rising need
for computer experts and first responders to work
closely with one another.

The rest of the article proceeds as follows. Part two
briefly introduces ICS and frames the contribution
of this study within the literature on ICS. Part three
shows how ICS can effectively integrate cybersecu-
rity experts and first responders into a single incident
response framework. Part four makes the case that
educational institutions and professional certifi-
cation organizations should make ICS a central

component of their cybersecurity curricula. The
article concludes by synthesizing the key themes pre-
sented in this analysis and offers recommendations
for future research in this area.

THE INCIDENT COMMAND
SYSTEM (ICS) — AN OVERVIEW

ICS is a method, or way, to respond to emergencies. It
superimposes an organizational coordinating structure
on the uncertain and ever-changing conditions of an
incident. Superimposing this management structure on
the incident response permits one or more organiza-
tions to work together in a more streamlined, effective
fashion. Moreover, ICS has been used successfully for
at least 30 years, demonstrating that it is a viable way
to manage emergency responses of any size or scope.

After the 9/11 terrorist attacks, ICS became a central
focus of federal efforts to streamline and enhance
incident response coordination. This renewed focus
on ICS was in part a direct reaction to many of
the coordination failures observed on 9/11, such as
poor communication and collaboration among local
government agencies in Manhattan following the col-
lapse of the World Trade Center Twin Towers (9/11
Commission, 2004, pp. 319–322). Calls for a national
standard in incident management led to the develop-
ment of the National Incident Management System
(NIMS) in 2004 (DHS, 2003; 9/11 Commission, 2004,
p. 397).

Today NIMS is a national approach to incident man-
agement that covers all jurisdictions and functional
areas (DHS, 2008). ICS is a central focus of NIMS
(DHS, 2008b, pp. 45–63). In recent, notable large-scale
incidents in the United States, public safety officials
used ICS in response to Hurricane Katrina in 2005
and the powerful Joplin, Missouri tornado of 2011
(9/11 Commission, 2004; C-SPAN, 2011; DeAtley,
2011, pp. 12–13). Government agencies also use ICS
throughout the United States on more routine, every-
day emergencies, from house fires to hostage standoffs.
And most recently, in the 2010 draft National
Cyber Incident Response Plan (NCIRP), the U.S.
Department of Homeland Security (DHS) identifies
ICS as the response methodology of choice for manag-
ing significant cyber incidents (DHS, 2010, p. 16).

Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System

 66 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Figure 1 below depicts a prototypical ICS organiza-
tional structure. While detailed explanations of the
specific positions shown in this ICS structure are
beyond the scope of this article, what is noteworthy—
and applicable directly to the management of SCADA
incidents—is that ICS incorporates a diversity of
actors performing distinct and complementary
functions in the context of an incident response effort.

The Siberian pipeline explosion and Stuxnet examples
introduced at the beginning of this article demonstrate
that cyber incidents can have real-world consequences
for the operation of critical infrastructure, particularly
in the realm of SCADA systems. SCADA incidents
can therefore require a coordinated response effort
among computer security incident response teams
(CSIRTs), which are specialized groups of informa-
tion technology (IT) professionals that manage cyber
incidents, and traditional first responders, like police
officers, firefighters, and EMTs. This confluence of
factors suggests that ICS may be a viable method to
coordinate the actions of CSIRTs and first responders.
Contemporary research on ICS, as well as government
reports on cyber incident management, underscores
that new understandings of how ICS may be used in
response to SCADA incidents are needed.

CONTEMPORARY SCHOLARSHIP ON
THE INCIDENT COMMAND SYSTEM

Research on ICS tends to emphasize one of three
primary themes. First, ICS must be adapted to the
unique local circumstances in which it is being used,
taking into consideration factors such as the scope
of the emergency and the jurisdictions involved in
the response. Second, despite the strengths of ICS,
the system also suffers from a number of serious
deficiencies that may limit its effectiveness under
certain conditions. And third, analyses of ICS’s orga-
nizational structure show that the system combines
elements of vertical organizational hierarchies and
horizontal organizational networks, which may
prove especially advantageous in responding to
SCADA incidents.

Many authors address the customization of ICS to
the needs of specific government agencies (Lam et
al., 2010; Bauer, 2009; Esposito, 2011; Yates 1999;
Ullman, 1998). Other scholars, however, critique
ICS for its lack of customizability. For example, at
least one author notes that ICS may be unsuitable
for response to cyber incidents (Coleman, 2010).
Still others take issue with ICS’ inability to address

FIGURE 1: PROTOTYPICAL INCIDENT COMMAND SYSTEM (ICS) STRUCTURE

Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System

 67NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

higher-level command structures beyond that of the
incident itself; the very notion that an incident can be
controlled within any type of framework; the natural
limits of ICS to adapt quickly to especially demand-
ing incidents, such as nuclear, chemical, or biological
attacks; ICS’ inability to absorb volunteers; its utility
being applicable only to para-military types of orga-
nizations; and the need for extensive organizational
training in order to realize its benefits (e.g. Lutz &
Lindell, 2008; Cole, 2000; Favero 1999; Yates, 1999).

A recent notable disaster—the 2010 Deepwater
Horizon oil rig explosion and spill—highlights the
complex forces influencing field use of ICS and
underlines the salience of these observations (Givens,
2011; Baron, 2010). Descriptions of how ICS blends
both elements of hierarchies and networks are useful,
too, because they can enhance understandings of how
ICS can be leveraged for SCADA incident responses
(Moynihan, 2007, 2008, 2009, 2009b).

Government reports on recent exercises to evaluate
cyber incident responses say nothing about ICS’s
suitability for emergencies concurrently affecting
SCADA systems and the physical world. Indeed,
three full-scale exercise reports from DHS spanning
2006–2011 do not specifically mention ICS at all
(DHS, 2011; DHS, 2009; DHS, 2006). These docu-
ments do, however, underscore the continuing need
for improved communication, coordination, and
information sharing in response to incidents affect-
ing critical infrastructure in the physical world and
cyberspace. In particular, they highlight the unique
challenge of maintaining a baseline of situational
awareness across all response entities during a
large-scale emergency (DHS, 2011; DHS, 2009; DHS,
2006). While greater knowledge of ICS’s field-based
utility and adaptability is helpful, existing literature
fails to explain how CSIRTs and first responders
might effectively integrate their actions within an
ICS structure during a SCADA incident.

Unfortunately, there do not appear to be any pub-
lished case studies of how ICS has been used to
integrate the actions of one or more CSIRTs and tra-
ditional first responders managing a SCADA incident.
This is understandable, however, because the idea of
CSIRTs and traditional first responders coordinating a
shared response to a SCADA incident is still relatively
new. But to illustrate how this coordination between
a CSIRT and first responders could work, let us next
consider a hypothetical example.

INTEGRATING CSIRTS AND
FIRST RESPONDERS USING THE
INCIDENT COMMAND SYSTEM

ICS can be modified easily to integrate CSIRTs and
first responders into a unified command structure.
Figure 2 adjusts the prototypical ICS structure and
shows how this integration occurs. For example, let
us assume that a computer hacker maliciously
attacks a SCADA system regulating the flow of water
out of a dam. This electronic attack, in turn, causes
the dam to release a torrent of water into a down-
stream community, causing flooding. Under this
scenario, a linkage exists between this cyber attack
and its physical effects. A CSIRT will need to
manage the cyber attack on the SCADA system and
traditional first responders will need to address
flooding in this downstream community.

FIGURE 2:

INCIDENT COMMAND SYSTEM (ICS)
STRUCTURE — INTEGRATING A COMPUTER

SECURITY INCIDENT RESPONSE TEAM (CSIRT)
AND TRADITIONAL FIRST RESPONDERS

Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System

 68 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

The CSIRT integrates into the ICS structure as a
branch within the Operations section, visible in the
bottom right corner of Figure 2. Additionally, a
CSIRT member joins other members of the Unified
Command, visible in the top center of Figure 2.
CSIRT members in the Operations section work on
the cyber component of this incident by managing the
hacker’s attack on the SCADA system. They work to
halt the hacker’s progress and to restore the flow of
water out of the dam to normal, pre-incident levels.
Striving to mitigate a future, similar attack, they
examine software code in concert with a vendor to
ensure security patches are properly installed. After
the incident has ended and recovery has begun, they
conduct a formal after-action analysis to confirm that
network vulnerabilities have been adequately closed.

While the CSIRT members address the cyber compo-
nent of this incident, first responders contend with
the physical effects of the cyber attack. Police officers
re-direct traffic. Firefighters assist with swift water
rescue of citizens trapped in their homes. Emergency
medical personnel attend to the injured. Each of these
distinct responses — the actions taken by the CSIRT,
and the actions taken by first responders — forms part
of a larger, integrated ICS structure.

ICS is useful for this kind of incident because of
its scalability. Responses to SCADA system attacks
incidents can involve fuzzy lines of jurisdiction
and control, complicating response efforts (DHS,
2011, pp. 17 – 19; DHS, 2009, pp. 11 – 12; DHS, 2006,
pp. 6 – 7). Thus a computer server owned by Firm
A, manufactured by Firm B, cooled by equipment
from Firm C, connected to a computer network via
hardware from Firm D, and serviced by contractors
from Firms E and F, can control a dam under the
jurisdiction of Town G, which is located upstream
from Villages H, I, and J. When this server’s failure
triggers effects in the physical world, it is challeng-
ing to organize and coordinate response agencies and
organizations. Yet when necessary, ICS rapidly scales
geographically, and it can efficiently incorporate these
different actors into a unified response effort.

ICS is also helpful in this hypothetical incident
because it can successfully integrate the actions of
teams performing very different functions. CSIRT

team members and traditional first responders like
police officers, firefighters, and emergency medical
personnel have divergent professional responsibilities.
Since ICS can incorporate diverse groups of respond-
ers, including CSIRT team members and traditional
first responders, it can be used to bring the efforts of
these different functional groups together within a
focused response coordination structure.

ICS offers a viable way forward for CSIRTs and first
responders to synchronize their response efforts dur-
ing a SCADA system attack. ICS can easily expand
to group CSIRTs and first responders into a uni-
fied organizational structure. The system is able to
accommodate teams of professionals from numerous
organizations and jurisdictions, even when they are
spread across a wide geographical area. And ICS
permits professionals performing radically different
jobs to work together toward common objectives. On
its face, ICS appears to offer an effective method for
CSIRTs and first responders to collaborate during
SCADA system incidents.

Having made the case that ICS offers a potential
solution for CSIRTs and first responders to integrate
better their responses to SCADA system incidents,
the next section argues that ICS training should be
an essential component of professional education for
cybersecurity professionals.

BRIDGING THE GAP:
INCORPORATING ICS TRAINING INTO
CYBERSECURITY CURRICULA

While numerous cybersecurity professional certifica-
tions exist, none appear to offer training in ICS. This
is puzzling, since DHS has signaled clearly that ICS
is the preferred response method for cyber incidents
of any size or scope. Moreover, even certifications for
those personnel specifically handling cyber incident
responses do not appear to include ICS as part of
their curricula. Table 1 lists four of the most popular
IT security certifications and shows that these certifi-
cations do not include training in ICS.

Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System

 69NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

The GIAC Certified Incident Handler credential is
prestigious, in that it comes from the SANS Institute,
one of the most widely recognized and peer-respected
cybersecurity organizations (Symantec, 2012). The
qualifications for this certification require cybersecu-
rity professionals to show knowledge and proficiency
in multiple functional areas, including the “steps of
the incident handling process” and “common attack
techniques that compromise hosts” (SANS Institute,
2014). These types of functional knowledge are to
be expected, since they are indispensable for success-
ful cyber incident management. However, the SANS
Institute website detailing the requirements for this
credential do not identify knowledge of ICS as a key
requirement for the certification.

The CISSP is arguably the most recognizable creden-
tial among cybersecurity professionals (Nemeth et
al., 2010, p. 945). The process to earn the CISSP is
long and rigorous. In addition to passing an exam,
prospective CISSP candidates must obtain at least five
years of direct, full-time work experience in 2 of 10
knowledge domains (ISC 2, 2014b). These knowledge
domains are: access control; telecommunications and
network security; information security governance
and risk management; software development secu-
rity; cryptography; security architecture and design;
operations security; business continuity and disaster
recovery planning; legal, regulations, investigations,

and compliance; and physical (environmental) security
(ISC 2, 2014b). Of these 10 knowledge domains, the
business continuity and disaster recovery domain is
most directly applicable to ICS since ICS itself was
born out of the need to respond more effectively to
traditional disasters, such as fires and earthquakes.
Nevertheless, the ISC 2 website does not mention train-
ing in ICS at all.

CompTIA’s Security + credential is not viewed uni-
versally to be among the strongest security credentials
for IT professionals (Anderson, 2010). The credential
is still popular, however, due in part to its reasonable
cost (Anderson, 2010). The Security + certification
covers several fundamental areas of cybersecurity,
including access control, identity management,
cryptography, incident mitigation, and deterrent
techniques (CompTIA, 2014). However, there is no
indication on the CompTIA website that ICS train-
ing is part of the Security + curriculum. CompTIA
also does not appear to offer other certifications that
would be more relevant or useful for cyber incident
management purposes.

EC-Council’s Certified Incident Handler credential
uses a classroom and lab-based learning model over
a two-day period (EC-Council, 2014). The organiza-
tion’s website includes a detailed agenda for the two
day training period, and this agenda lists a significant

CERTIFYING
BODY

CERTIFICATION
RELEVANT BASIC TRAINING

REQUIREMENTS

EVIDENCE OF
ICS TRAINING?

(YES/NO)

INFORMATION
SOURCE(S)

SANS
Institute

GIAC Certified Incident
Handler

Incident Handling Overview, Identification,
and Containment

No SANS Institute, 2014

ISC
Certified Information

Systems Security
Professional (CISSP)

Domain experience in 2 of 10 functional
areas, including business continuity/

disaster recovery
No

ISC 2, 2014;
ISC 2, 2014b

CompTIA Security +
Access control, identity management,

cryptography, mitigation/deterrent techniques
No CompTIA, 2014

EC-Council Certified Incident Handler
Incident Response, Incident Handling,

Incident Categories
No EC-Council, ND

TABLE 1:

IT SECURITY PROFESSIONAL CERTIFICATIONS AND REQUIREMENTS

Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System

 70 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

amount of instruction about how to form CSIRTs,
incident response methods, and how to identify and
categorize incidents that occur (EC-Council, n.d., pp.
3–6). But nowhere in this detailed training agenda
does EC-Council mention ICS, its applicability to
cyber incidents, or the ways in which ICS can integrate
the efforts of CSIRTs and traditional first responders.

Four of the top cybersecurity professional certifica-
tions do not appear to identify or address explicitly the
need for cybersecurity professionals to be proficient in
ICS. One might expect colleges and universities, which
recently have seen a great surge in growth of cyberse-
curity degree programs, to fill this gap in knowledge by
including ICS instruction in their undergraduate and
graduate-level curricula. It appears, however, that at
least among the top five cybersecurity degree programs
in the country, none have incorporated ICS training
into their course syllabi.

A 2014 study by the Ponemon Institute, an indepen-
dent Michigan-based research center focusing on IT
security issues, ranked the top collegiate cybersecurity
programs in the nation (Ponemon Institute, 2014). The
data to construct the rankings came from a survey
of IT security practitioners (Ponemon Institute,
2014, pp. 1–2). The top five schools in the rankings,
in descending order, were: the University of Texas
at San Antonio, Norwich University, Mississippi
State University, Syracuse University, and Carnegie
Mellon University (Ponemon Institute, 2014, p. 1).
A web-based survey of these institutions’ cybersecu-
rity curricula suggests that ICS training is not being
included in higher education curricula for cybersecu-
rity. Table 2 lists the top five schools in the Ponemon
Institute rankings, identifies classes within their cur-
ricula that relate to incident responses, and identifies
those institutions that explicitly include ICS as part of
their coursework.

INSTITUTION
RELEVANT DEGREE

PROGRAM(S)
OFFERED

COURSE(S) RELATED TO CYBER
INCIDENT MANAGEMENT

EVIDENCE OF
ICS TRAINING

BEING
OFFERED?
(YES/NO)

SOURCE(S)

UNIVERSITY OF
TEXAS AT

SAN ANTONIO

BBA Cybersecurity, MS
Information Assurance,
BS and MS in Computer

Science with security
concentration

Principles of Computer Information Security,
Introduction to Digital Forensics, Intrusion

Detection and Incident Response
No

UTSA, n.d.;
UTSA, n.d.-b;
UTSA, n.d.-c;
UTSA, n.d.-d;
UTSA, n.d.-e

NORWICH
UNIVERSITY

Computer Security and
Information Assurance
undergraduate major

and minor

Information Assurance I and II No

Norwich University
2014;

Norwich University
2014b

MISSISSIPPI
STATE

UNIVERSITY

BS Computer Science,
BS Software Engineering,

MS Computer Science

Business Information
Systems Security Management

No
MSU, 2014;
MSU, 2014b;
MSU, 2013

SYRACUSE
UNIVERSITY

MS Cybersecurity,
Certificate of Advanced
Study in Information

Security Management

Computer Security, Internet Security No
SU, 2015;
SU, 2015b

CARNEGIE
MELLON

UNIVERSITY
MS Information Security

Network Forensics, Cyber Forensics and
Incident Response Capstone

No
CMU, 2014;
CMU, 2014b

TABLE 2:

TOP 5 ACADEMIC CYBERSECURITY PROGRAMS AND ICS TRAINING *

* AS CALCULATED IN PONEMON, 2014.

Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System

 71NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

The University of Texas at San Antonio houses
the top-ranked cybersecurity degree programs in
the United States (Ponemon Institute, 2014, p.1).
These programs include a Bachelor of Business
Administration degree in Cybersecurity, as well as a
Master of Science degree in Information Assurance
(UTSA, n.d.-b; UTSA, n.d.-c). UT San Antonio
features several courses that pertain to cyber inci-
dent management, as well. These courses include
Introduction to Digital Forensics, which teaches stu-
dents how to analyze systematically the aftermath of
a cyber incident, as well as Intrusion Detection and
Incident Response, which deals precisely with the
topic of responding to cyber incidents (UTSA, n.d.-
e). Among the descriptions of these degree programs
and courses, however, there is no mention of ICS.
Norwich University, Mississippi State University,
Syracuse University, and Carnegie Mellon University
round out the top five cybersecurity academic
programs in the United States. None of these institu-
tions appears to offer any instruction in ICS for
cybersecurity students, either.

There are several possible explanations for the absence
of ICS instruction in these top cybersecurity degree
programs. The simplest and most plausible explana-
tion is that these institutions do train students in ICS
within their courses, but they do not make that fact
publically known on their websites. It is also possible
that universities are reacting to changing marketplace
demands in cybersecurity, and this reacting creates a
lag effect between the emergence of a market-driven
need for training in ICS and universities ultimately
incorporating ICS training into their curricula. This
explanation seems less probable, though. The NCIRP,
which specifically identified ICS as the response
method of choice, was published in 2010—four years
before this writing, and a reasonable amount of time
for universities to adopt and incorporate ICS training
into their courses. A third possible explanation is that
training in ICS is seen as too “practitioner-driven” for
a university setting and somehow lacking in academic
rigor or legitimacy. Yet this explanation rings hollow,
as Norwich University and Syracuse University are
known for being “military-friendly” institutions with
many students that come from practitioner-oriented
backgrounds in the U.S. armed services (Jevis, 2014;
Norwich, 2014).

It is clear that the top cybersecurity professional
certifications and cybersecurity academic programs in
the United States either do not include ICS training as
part of their course curricula; or, at a minimum, these
certifications and degree programs do not place great
emphasis on the fact that this ICS training is included
in their courses. Given the need for CSIRTs and first
responders to synchronize their responses to SCADA
incidents, this gap in ICS training should be corrected
by the certifying bodies and universities themselves.
To support these certifying bodies and universities in
their efforts, however, DHS and the Department of
Defense (DOD) can offer three forms of low- or no-
cost assistance.

DHS and DOD can help to push knowledge of ICS
to cybersecurity certification groups and universities
through incentives, web-based resources, and hands-
on training. If it costs certification organizations
money to make changes to their curricula, then they
must have a compelling reason to make these modi-
fications. DHS and DOD can offer one-time cash
awards, in the form of grants or prizes, to groups like
ISC 2 and institutions of higher education to make
these changes quickly. This “free money” would go a
long way toward overcoming organizational inertia
to making curricular modifications, and would not
act as a long-term financial burden on the federal
government, because the awards themselves would
be one-time-only cash allocations. DHS and DOD
can also make available web-based resources for ICS
training. DHS already makes available online ICS
resources for first responders and others in the emer-
gency management community (DHS, ND). Tailoring
this information slightly to a cybersecurity-oriented
audience could be helpful in encouraging CSIRTs
to adopt ICS. Lastly, DHS and DOD could offer
occasional hands-on training in ICS for CSIRTs. To
encourage attendance, these agencies would have to
offer the training so that it is convenient for CSIRTs to
attend, and at little or no cost. DHS already conducts
these hands-on ICS trainings, often through state-level
emergency management agencies, for first responders
and emergency managers (VDEM, 2012). Adapting
the existing hands-on ICS training for CSIRTs could
also go a significant way toward encouraging CSIRTs
to adopt ICS.

Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System

 72 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

CONCLUSIONS

This article argued that CSIRTs should use ICS during
SCADA incidents, because doing so makes it easier to
integrate CSIRT actions with those of traditional first
responders. Although this arrangement may present
select communication and coordination challenges
for CSIRTs and first responders, on balance ICS will
help CSIRTs and first responders to manage SCADA
incidents more effectively. To facilitate the use of ICS
by CSIRTs, the nation’s top professional cybersecurity
certification groups and universities offering cyber-
security degrees should make ICS an explicit part of
their curricula.

There is a compelling need for additional research in
this area, because little is known about the process by
which the field-based findings of homeland security
and cybersecurity practitioners eventually integrate
into educational and training programs. In particular,
the absence of case studies about how lessons learned
from specific incident responses feed into educational
programs in homeland security and cybersecurity is
problematic. Scholars and practitioners can ben-
efit from deeper investigations of how these lessons
learned in real world incidents can be integrated better
into formal educational settings.

The cybersecurity and emergency management com-
munities can also benefit from greater knowledge
exchange. It has been said that ICS can be a way of
thinking about incident management, as well as a
way of coordinating response to an incident. In other
words, ICS is not merely a management tool for
dealing with an incident; ICS also conveys a cultural
approach to incident management that emphasizes
principles like flexibility, adaptability, and creativity.
How can CSIRTs learn to “do” ICS, and also embrace
these principles in their own cultural approach to
incident management?

One possible first step is for CSIRT members in
government agencies and the private sector to
take independent study courses online through the
Federal Emergency Management Agency’s (FEMA)
Emergency Management Institute as part of their
normal training activities. These emergency manage-
ment courses, which are available for free, can provide
CSIRT members with introductory knowledge of
the principles found in NIMS, the NRF, and ICS
(FEMA, 2012). In completing these courses, CSIRT

members can develop more sophisticated and nuanced
understandings of how ICS can be beneficial for
them. CSIRT members can also gain helpful insights
into how first responders use ICS during incidents.
Important principles of emergency management like
flexibility and resiliency can become more inculcated
in a CSIRT’s culture as a result of this training. And
this training, in turn, can help CSIRTs to better inte-
grate their operations with traditional first responders,
and to achieve better results in managing incidents.

As SCADA incidents become increasingly common,
there will be a pressing need for CSIRTs and tradi-
tional first responders to coordinate their response
actions. ICS, a proven method for managing incidents
of any size, scope, or cause, can help CSIRTs and
first responders to better integrate their efforts and
strengthen homeland security as a result. It is now
essential that cybersecurity training and education
programs embrace ICS to prepare their students for
joint responses with homeland security practitioners.

REFERENCES CITED
Anderson, N. (2010, January 26). Thought that A+ cert was good for life?
Think again. Ars Technica. Retrieved from http://arstechnica.com/tech-
policy/2010/01/thought-that-a-cert-was-good-for-life-think-again/

Bauer, T.P. (2009). Is NIMS going to get us where we need to be?:
A law enforcement perspective (master’s thesis). Naval Postgraduate
School, retrieved from the Homeland Security Digital Library.

Baron, G. 2010. (2010, May 14). Deepwater and the future of NIMS.
Emergency Management. Retrieved from http://www.emergencymgmt.
com/emergency-blogs/crisis-comm/Deepwater-and-the-Future.html

Barzashka, I. (2013). Are cyber weapons effective? Assessing Stuxnet’s
impact on the Iranian enrichment program. The RUSI Journal, 158, 48–56.

Carnegie Mellon University. (2014). CyLab. Retrieved from
https://www.cylab.cmu.edu/education/index.html

Carnegie Mellon University. (2014b). MSIS Core Course Descriptions.
Retrieved from http://www.ini.cmu.edu/degrees/msis/courses.html#forensics

Cole, D. (2000). The Incident command system: A 25
year evaluation by California practitioners. Retrieved from
http://www.usfa.fema.gov/pdf/efop/efo31023.pdf

Coleman, K. (2010, October 18). Cyber incident responders lack
a shared playbook. DefenseSystems. [Commentary]. Retrieved
from http://defensesystems.com/articles/2010/10/15/
digital-conflict-cyber-incident-response.aspx

CompTIA. (2014). CompTIA Security +. Retrieved from
http://certification.comptia.org/getCertified/certifications/security.aspx

Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System

 73NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

C-SPAN. (2011, March 16). Louisiana Incident Command
Post. Retrieved from http://youtu.be/_ctvFT_Sq7w

DeAtley, C. (2011). 45 seconds of danger, a lifetime
of lessons. DomPrep Journal, 7, 12 –13.

Department of Homeland Security. (2014). Cyber storm: Securing cyber
space. Retrieved from http://www.dhs.gov/cyber-storm-securing-cyber-space

Department of Homeland Security. (2011). Cyber storm III: Final
report. Retrieved from http://www.dhs.gov/sites/default/files/
publications/CyberStorm%20III%20FINAL%20Report.pdf

Department of Homeland Security. (2010). National cyber incident response
plan [Interim Version]. Retrieved from http://www.federalnewsradio.
com/pdfs/NCIRP_Interim_Version_September_2010.pdf

Department of Homeland Security. (2009). Cyber storm II: Final
report. Retrieved from http://www.dhs.gov/sites/default/files/
publications/Cyber%20Storm%20II%20Final%20Report.pdf

Department of Homeland Security. (2008). National incident
management system [Brochure]. Retrieved from http://www.
fema.gov/pdf/emergency/nims/NIMS_brochure.pdf

Department of Homeland Security. (2008b). National
incident management system. Retrieved from https://www.
fema.gov/pdf/emergency/nims/NIMS_core.pdf

Department of Homeland Security. (2006). Cyber storm exercise report.
Retrieved from http://www.dhs.gov/sites/default/files/publications/
Cyber%20Storm%20I%20After%20Action%20Final%20Report.pdf

Department of Homeland Security. (2003, February 28). Homeland
Security Presidential Directive 5: Management of Domestic Incidents.
Retrieved from http://www.dhs.gov/sites/default/files/publications/
Homeland%20Security%20Presidential%20Directive%205.pdf.

Department of Homeland Security. (n.d.). ICS resource center.
Retrieved from http://training.fema.gov/EMIWeb/is/ICSResource/

EC-Council. (2014). EC-Council certified incident handler. Retrieved from
http://www.eccouncil.org/Certification/ec-council-certified-incident-handler

EC-Council. (n.d.). EC-Council certified incident handler course
outline, Version 1. Retrieved from http://www.eccouncil.org/
portals/0/Images/img/icons/ECIH-v1-Course-Outline.pdf

Esposito, J.M. (2011). New York City chief fire officer’s
evaluation of the citywide incident management system as it
pertains to interagency emergency response (master’s thesis).
Retrieved from the Homeland Security Digital Library.

Favero, G.T. (1999). Flexibility of the incident command
system to respond to domestic terrorism (master’s thesis).
Retrieved from the Homeland Security Digital Library.

Federal Emergency Management Agency. (2012). Emergency
management institute: Independent study program.
Retrieved from http://training.fema.gov/is/

Ferran, L. & Radia, K. (2013, July 9). Edward Snowden: U.S., Israel
‘co-wrote’ cyber super weapons Stuxnet. ABC News. Retrieved
from http://abcnews.go.com/blogs/headlines/2013/07/edward-
snowden-u-s-israel-co-wrote-cyber-super-weapon-stuxnet/

Fildes, J. (2010, September 23). Stuxnet worm ‘targeted
high-value Iranian assets.’ BBC. Retrieved from http://
www.bbc.com/news/technology-11388018

Givens, A. (2011, May 27). Deepwater Horizon oil spill is an ominous
sign for critical infrastructure’s future. Emergency Management.
Retrieved from http://www.emergencymgmt.com/disaster/Deepwater-
Horizon-Oil-Spill-Critical-Infrastructure-052711.html?page=1&

ISC 2. (2014). How to get your CISSP certification. Retrieved
from https://www.isc2.org/cissp-how-to-certify.aspx

ISC 2. (2014b). CISSP–professional experience requirement. Retrieved
from https://www.isc2.org/cissp-professional-experience.aspx

Jevis, E. (2014, January 13). SU selected as a top military-
friendly school. Retrieved from http://news.syr.edu/su-
selected-as-a-top-military-friendly-school-61362/

Katz, Y. (2010, December 15). Stuxnet virus vet back Iran’s nuclear program
by 2 years. The Jerusalem Post. Retrieved from http://www.jpost.com/Iranian-
Threat/News/Stuxnet-virus-set-back-Irans-nuclear-program-by-2-years

Lam, C., Lin, M., Tsai, S., & Ta-Chiu, W. (2010). A pilot study of citizens’
opinions on the incident command system in Taiwan. Disasters, 34, 447–469.

Lutz, L.D. & Lindell, M.K. (2008). Incident Command System as a
Response Model Within Emergency Operations Centers during Hurricane
Rita. Journal of Contingencies and Crisis Management, 16, 122–134.

Mississippi State University. (2014). Department of Computer
Science and Engineering: Academics [Course listing]. Retrieved
from http://www.cse.msstate.edu/academics/understud/

Mississippi State University. (2014b). Center for Computer
Security Research [Course listing]. Retrieved from http://
www.security.cse.msstate.edu/academics.php

Mississippi State University. (2013). Department of Computer Science
and Engineering: Prospective Students. Retrieved from http://
web.cse.msstate.edu/prospective/grad/msguidelines.php.

Moynihan, D. P. (2009). The network governance of crisis response:
Case studies of incident command systems. Journal of Public
Administration Research and Theory, 19, 895–915.

Moynihan, D. P. (2009b). From intercrisis to intracrisis learning.
Journal of Contingencies and Crisis Management, 17, 189–198.

Moynihan, D. P. (2008). Combining structural forms in the search for policy
tools: Incident command systems in U.S. crisis management. Governance: An
International Journal of Policy, Administration, and Institutions, 21, 205–229.

Moynihan, D. P. (2007). From forest fires to Hurricane Katrina: Case
studies of incident command systems. IBM Center for the Business of
Government. Retrieved from the Homeland Security Digital Library.

Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System

 74 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

https://www. fema.gov/pdf/emergency/nims/NIMS_core.pdf
http://www. fema.gov/pdf/emergency/nims/NIMS_brochure.pdf
http://www.dhs.gov/sites/default/files/publications/ Cyber%20Storm%20I%20After%20Action%20Final%20Report.pdf
http://www.eccouncil.org/ portals/0/Images/img/icons/ECIH-v1-Course-Outline.pdf

National Security Archive. (2013, April 26). Update: Agent
Farewell and the Siberian pipeline explosion. Retrieved from
https://owl.english.purdue.edu/owl/resource/560/10/

Nemeth, E., Snyder, G., & Hein, T.R. (2010). Unix and Linux system
administration: 4th edition. Upper Saddle River, NJ: Prentice Hall.

The 9/11 Commission. (2004). The 9/11 Commission Report. Retrieved
from http://www.9-11commission.gov/report/911Report.pdf

Norwich University. (2014). BS in Computer Security and
Information Assurance [Course listing]. Retrieved from http://
profschools.norwich.edu/business/csia/curriculum/

Norwich University. (2014b). Information Assurance Minor
[Course listing]. Retrieved from http://profschools.norwich.
edu/business/csia/information-assurance-minor/

Ponemon Institute. (2014). 2014 best schools for cybersecurity.
Retrieved from http://www.hp.com/hpinfo/newsroom/press_kits/2014/
RSAConference2014/Ponemon_2014_Best_Schools_Report.pdf

SANS Institute. (2014). GIAC Certified Incident Handler (CIH). Retrieved
from http://www.giac.org/certification/certified-incident-handler-gcih

Symantec. (2012, December 18). Security bulletin from
SANS Institute. Retrieved from http://www.symantec.com/
connect/blogs/security-bulletin-sans-institute

Syracuse University. (2015). Academic Programs: Cybersecurity.
Retrieved from http://eng-cs.syr.edu/prospective-students/
academic-programs/masters/detail/cybersecurity.

Syracuse University. (2015b). 2015–2016 Graduate Course
Catalog: Certificate of Advanced Study in Information Security
Management [Course listing]. Retrieved from http://coursecatalog.
syr.edu/preview_program.php?catoid=4&poid=1521.

Ullman, M. (1998). Integration of the incident management system
between the police and fire departments of the city of Goodyear,
Arizona. Retrieved from the Homeland Security Digital Library.

University of Texas at San Antonio. (n.d.). UTSA Cyber Security.
Retrieved from http://utsa.edu/cybersecurity/

University of Texas at San Antonio. (n.d.-b). Bachelor of Business
Administration Degree in Cyber Security [Course listing].
Retrieved from http://www.utsa.edu/ucat/cob/bbaia.html

University of Texas at San Antonio. (n.d.-c). Master of Science
Degree in Information Technology–Information Assurance
Concentration [Course listing]. Retrieved from http://www.
utsa.edu/gcat/chapter6/COB/istmdept.html#msitiac

University of Texas at San Antonio. (n.d.-d). Dependency graph of required CS
courses and concentrations: 2014–2016 catalog. Retrieved from http://www.
cs.utsa.edu/uploads/docs/CSCoursesForMajorsConcentrations_2014.pdf

University of Texas at San Antonio. (n.d.-e). Information Systems (IS) Course
Descriptions. Retrieved from http://www.utsa.edu/ucat/cob/is.html#is3523

VDEM. (2012). ICS-400: Advanced Incident Command
System. Retrieved from http://www.vaemergency.gov/em-
community/training/ics-400-advanced-ics-400

Warrick, J. (2011, February 16). Iran’s Natanz nuclear facility
recovered quickly from Stuxnet cyber attack. The Washington
Post. Retrieved from http://www.washingtonpost.com/wp-dyn/
content/article/2011/02/15/AR2011021505395.html

Yates, J. (1999). Improving the management of emergencies: enhancing
the ICS. Australian Journal of Emergency Management, Winter, 22–28.

AUTHOR

Austen D. Givens (adgivens@utica.edu) is an assistant
professor of cybersecurity at Utica College and a
doctoral candidate at King’s College London. With
Nathan E. Busch, he is the author of The Business
of Counterterrorism: Public-Private Partnerships in
Homeland Security (2014). Follow him on Twitter
@GivensAD.

Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System

 75NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

http://profschools.norwich. edu/business/csia/information-assurance-minor/
http://www.hp.com/hpinfo/newsroom/press_kits/2014/ RSAConference2014/Ponemon_2014_Best_Schools_Report.pdf
http://www. utsa.edu/gcat/chapter6/COB/istmdept.html#msitiac
http://www. cs.utsa.edu/uploads/docs/CSCoursesForMajorsConcentrations_2014.pdf

 76 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

	National Cybersecurity Institute Journal Volume 2, Number 3
	Table of Contents
	From the Editor
	Project-based Curricular Service Learning for Cybersecurity Education
	A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs
	Creating New Private-Public Partnerships in Cybersecurity
	Evolution of Information Security Issues in Small Businesses
	Hybrid Implementation of Flipped Classroom Approach to Cybersecurity Education
	Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware
	Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Co

