
Volume 2, No. 3

NatioNal CyberseCurity 
iNstitute JourNal 



© Excelsior College, 2015

ISSN 2375-592X

National Cybersecurity Institute | 2000 M Street, Suite 500 | Washington, D.C. 20036 
Excelsior College | 7 Columbia Circle | Albany, NY 12203-5159



NATIONAL CYBERSECURITY INSTITUTE JOURNAL
Volume 2, No. 3

FOUNDING EDITOR IN CHIEF

Jane LeClair, EdD, 
National Cybersecurity Institute at Excelsior College

ASSOCIATE EDITORS

Nadine H. Alami, Doctoral Candidate, 
National Cybersecurity Institute at Excelsior College

Michael Tu, PhD, Purdue University

5. Project-based Curricular Service Learning for Cybersecurity Education
Ping Wang

13. A Probabilistic Framework for Quantifying Mixed 
Uncertainties in Cyber Attacker Payoffs 
Samrat Chatterjee 
Ramakrishna Tipireddy 
Matthew Oster 
Mahantesh Halappanavar

25. Creating New Private-Public Partnerships in Cybersecurity
Chris Golden

31. Evolution of Information Security Issues in Small Businesses  
Debasis Bhattacharya  
Debra A. Nakama

45. Hybrid Implementation of Flipped Classroom Approach 
to Cybersecurity Education
Aparicio Carranza  
Casimer DeCusatis

55. Malware Fingerprinting: Analysis of Tool Marks and 
Other Characteristics of Windows Malware
Sean McVey

65. Strengthening Cyber Incident Response Capabilities Through 
Education and Training in the Incident Command System
Austen D. Givens

 1NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3



EDITORIAL BOARD

FOUNDING EDITOR IN CHIEF
Jane LeClair, EdD, 
National Cybersecurity Institute at Excelsior College

ASSOCIATE EDITORS
Nadine H. Alami, Doctoral Candidate, 
National Cybersecurity Institute at Excelsior College

Michael Tu, PhD, Purdue University

PEER REVIEWERS

The National Cybersecurity Institute Journal gratefully acknowledges the reviewers who have provided valuable service 
to the work of the journal:

PEER REVIEWERS
Mohammed A. Abdallah, PhD,  
 Excelsior College/State University of NY
James Antonakos, MS,  
 Broome Community College/Excelsior College
Barbara Ciaramitaro, PhD  
 Excelsior College/Walsh College
Kenneth Desforges, MSc, Excelsior College 
Amelia Estwick, PhD, Excelsior College

Ron Marzitelli, MS, Excelsior College
Kris Monroe, AOS, Ithaca College 
Kevin Newmeyer, PhD, National Cybersecurity Institute Fellow
Charles Parker, Doctoral Candidate, Ciena Healthcare
Denise Pheils, PhD, Excelsior College
Lifang Shih, PhD, Excelsior College
Michael A. Silas, PhD, Excelsior College/Courage Services
Michael Tu, PhD, Purdue University

NATIONAL CYBERSECURITY INSTITUTE JOURNAL 

The National Cybersecurity Institute at Excelsior College 
is a research center based in Washington, DC, dedicated 
to increasing knowledge of the cybersecurity discipline 
and its workforce demands. Published three times a 
year, the peer-reviewed National Cybersecurity Institute 
Journal covers topics that appeal to a broad readership 
within the cybersecurity discipline, with a particular focus 

on education, training, and workforce development. The 
manuscripts submitted to the journal are reviewed for their 
contribution to the advancement of applied research in the 
area of cybersecurity. 

Submission guidelines for authors can be found at 
www.nationalcybersecurityinstitute.org/journal/.

 2 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3  

www.nationalcybersecurityinstitute.org/journal/


FROM THE EDITOR

Welcome to the third issue in Volume 2 of the National Cybersecurity Institute Journal.

These are exciting times in the cybersecurity community with news of ongoing cyber breaches, 
new legislation, and numerous meetings that seek to dissuade hackers from attacking our digital 
systems. Here at NCI, through our journal, we continue to increase awareness and knowledge of 
the cybersecurity discipline to help everyone better understand and meet the escalating challenges 
in the cyber community. In this latest issue, you will find seven informative articles from notable 
authors with a variety of perspectives on the field.

In our first article, Ping Wang presents us with “Project-based Curricular Service Learning for 
Cybersecurity Education,” a paper that proposes a project-based curricular service learning 
model to enhance education and career preparation in cybersecurity. Next, the team of Samrat 
Chatterjee, Ramakrishna Tipireddy, Matthew Oster, and Mahantesh Halappanavar provides 
us with their paper, “A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber 
Attacker Payoffs,” which highlights the importance of quantifying several sources and types of 
uncertainty impacting cyber attacker payoffs (defined as a penalty or reward based on actions) 
within a problem space. In his offering, Chris Golden suggests that “Creating New Private-Public 
Partnerships in Cybersecurity” can help create an environment that fosters cooperation between 
the private and public arenas and might create a larger incentive for businesses to join a cyber-
security partnership. Next, Debasis Bhattacharya and Debra A. Nakama discuss in detail the 
cybersecurity issues that relate to small businesses in their article, “Evolution of Information 
Security Issues in Small Businesses.” Aparicio Carranza and Casimer DeCusatis provide us with 
an interesting look at the flipped classroom in their offering, “Hybrid Implementation of Flipped 
Classroom Approach to Cybersecurity Education.” Malware is an ongoing issue, and Sean McVey 
presents an interesting look at it with “Malware Fingerprinting: Analysis of Tool Marks and Other 
Characteristics of Windows Malware.” Finally, we all recognize the importance of appropriate 
incidence response to a cyber attack and Austen Givens provides the reader with an in-depth look 
at it with “Strengthening Cyber Incident Response Capabilities Through Education and Training 
in the Incident Command System.”

The editors at NCI Journal believe these articles will continue to educate our readers and pro-
vide them with useful information that can be applied to their own systems and organizations to 
strengthen their systems cybersecurity.

The security of your digital system is of prime importance to you and your stakeholders, and we 
work continually to publish articles that you, our readers, will find helpful in your organization. 
Many thanks go to all the contributors, administration, and staff for their ongoing efforts to bring 
this latest edition of the National Cybersecurity Institute Journal to fruition. I look forward to your 
comments, suggestions, and future submissions to the journal.

Jane A. LeClair, EdD

Editor in Chief 
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Project-based Curricular Service Learning for 
Cybersecurity Education

Ping Wang

ABSTRACT

Cybersecurity is a fast-growing career field with 
increasing challenges for educators. Service 
learning can be an effective educational method 
to improve career knowledge, skills, and profes-
sionalism. This paper proposes a project-based 
curricular service learning model to enhance edu-
cation and career preparation in cybersecurity. 
The model proposes that student experience, dis-
covery, and learning from course-related service 
projects are key elements to improving readiness 
for the cybersecurity profession. The proposition 
is supported by data and findings from a longitu-
dinal study using a service learning project and 
team collaboration.

INTRODUCTION

Cybersecurity, traditionally known as information 
security, is a fast-growing career field due to soaring 
and costly cyber crimes. College programs in cyber-
security typically prepare graduates for entry-level 
positions, such as cybersecurity analysts. According 
to the United States Department of Labor Bureau of 
Labor Statistics (BLS), employment of information 
security analysts is projected to grow 37% from 2012 
to 2022, much faster than the average growth rates of 
11% for all occupations and 18% for all computer-
related occupations (United States Department of 
Labor, 2014). There is a national shortage of cyber-
security professionals with the right knowledge and 
skills, and education is expected to be the key solution 

(RAND National Security Research Division, 2014). 
Therefore, there are increasing demands and opportu-
nities for cybersecurity education and training. 

Meanwhile, serious challenges exist for cybersecu-
rity education. Cybersecurity is a new area based on 
the traditional computing profession and requires 
students to have a strong background and preparation 
in computer and information science and technology 
to succeed academically and professionally. However, 
there has been a perpetuated failure of education in 
the United States to prepare a strong and world-lead-
ing workforce in computing professions (Patterson, 
2005). Major characteristics of this failure in U.S. 
undergraduate computing programs include outdated 
curricula, declining enrollment, and ignoring service 
learning opportunities that build application skills 
(Morelli, de Lanerolle, & Tucker, 2012). The outdated 
curricula and course content and lack of knowledge 
application experience may be the leading cause for 
the gap between the students’ learning and the actual 
skills needed in the employment market. A recent 
graduate in computer software engineering from a 
major public university gives a vivid description of 
such a gap after his failure to find a job despite the 
fact that he graduated at the top of his engineering 
class: My college education left me totally unprepared 
to enter the real workforce. My degree was supposed 
to make me qualified as a programmer, but by the time 
I left school, all of the software and programming lan-
guages I’d learned had been obsolete for years (Ark, 
2014, para. 3).

To address the cybersecurity needs and coordinate the 
national effort on improving cybersecurity educa-
tion, training, and professional development, the 
U.S. National Initiative for Cybersecurity Education 
(NICE) was established. The mission of NICE is 
“to enhance the overall cybersecurity posture of the 
United States by accelerating the availability of educa-
tional and training resources designed to improve the 
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cyber behavior, skill, and knowledge of every segment 
of the population—enabling a safer cyberspace for 
all” (National Initiative for Cybersecurity Careers and 
Studies, US Department of Homeland Security, n.d., 
para. 2). This mission underscores the importance of 
both knowledge acquisition and knowledge sharing 
in the communities of our society for the benefit of 
everyone’s security in the cyberspace. 

To help bridge the gap between college education 
offering and the job skills needed in the real world, 
this paper proposes a project-based curricular service 
learning model for cybersecurity education. The 
service learning model provides constructive and valu-
able opportunities for students to actively apply their 
learning to real world situations, gain authentic hands-
on experience, improve their skills in collaboration, 
reflection and critical thinking, and cultivate strong 
professional and community service ethics that are 
critical to a successful career. This paper also reports 
and discusses the empirical data and findings in sup-
port of the model. 

CONSTRUCTIVE SERVICE LEARNING: 
THEORIES AND MODELS

Solid career preparation requires constructive student-
centered learning and growth through education. 
Service learning is both a practical service and a con-
structive learning process that involves active knowl-
edge inquiry, discovery, and acquisition and sharing. 
Bruner (1961) defines discovery learning as all forms 
of knowledge acquisition by using one’s own mind 
such as those used in curricula projects. Curricula 
service learning is guided by and complements class 
instruction. A curricula service learning project is an 
enhanced discovery leaning process assisted by the 
instructions, guidelines, examples, and feedback from 
the course instructor rather than a totally indepen-
dent self-inquiry by a student. Research indicates that 
enhanced discovery learning is much more effective 
than unassisted discovery or independent inquiry 
(Alfieri, Brooks, & Alderich, 2011). This type of 
discovery learning is often referred to as constructiv-
ism, which emphasizes the active role of the learner in 
knowledge acquisition and application.

Comprehensive analysis of 11 service learning 
research studies involving over 2,000 undergradu-
ate students suggests that service learning has had 
statistically significant and positive effects on student 
learning outcomes (Warren, 2012). In cybersecurity 
workforce preparation, human capital and cybersecu-
rity knowledge are the essential factors for achieving 
technical competence in the general cybersecurity 
competency model (United States Government 
Accountability Office, 2011). Knowledge is the 
contextual and high-value form of information and 
experience ready to apply to decisions and actions 
(Davenport, De Long, & Beers, 1998). Knowledge 
consists of both explicit knowledge or communicable 
information and tacit knowledge, which is personal 
and intuitive insight and know-how originated from 
individual experiences and values (Desouza, 2003). 
Service learning provides such individual experiences 
for acquiring and sharing explicit and tacit knowledge. 
In addition, the theory of reasoned action states that 
individual perception and attitude are a determin-
ing factor of one’s behavioral intention that predicts 
one’s actual behavior (Fishbein & Ajzen, 1975). Prior 
research results indicate a significant positive correla-
tion between individuals’ cybersecurity knowledge 
and their intention and attitude toward cybersecurity 
technology (Wang, 2010, 2013). This paper proposes 
that service learning experience positively contributes 
to students’ motivation and success in learning. In 
other words, students’ service learning experience and 
knowledge acquisition in cybersecurity improve their 
perceptions and attitude toward cybersecurity technol-
ogy, which in turn improves their motivation for learn-
ing behavior and success in cybersecurity education. 

Service learning brings many positive pedagogical 
effects that enhance learning, and the most significant 
gains are in application experience, critical thinking 
through reflection, professionalism and community 
service ethics, and attitude and motivation for 
learning. Through hands-on learning-by-doing service 
learning activities, such as community service projects, 
internships, practica, and research projects, students 
make significant gains in their knowledge and skills 
(such as security awareness) and in their ability to 
contribute to the welfare of their communities (Aldas, 
Crispo, Johnson, & Price, 2010; Lincke, 2011). Service 
learning is a process that involves frequent reflection 
on knowledge and experience that enhances critical 
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thinking and learning. Reflection is a critical thinking 
activity that demonstrates one’s abilities and skills in 
connecting experience, observation, theories, reason-
ing, and learning objectives. In service learning, 
reflection activities, such as written or oral reports and 
presentations, encourage and enable students to 
explore, discover, and evaluate relationships between 
the course content learned from readings, lectures, and 
discussions, and their real experiences from doing the 
service learning work for the community (Ahmed, 
Hutter, & Plaut, 2008).  

Service learning also contributes to the development 
of students’ professional and community service ethics. 
Through service learning experience, students learn to 
serve the community with pride and ethical behavior, 
increase their recognition of civic responsibilities and 
social justice, and develop a life-long habit of com-
munity service and civic involvement (Aldas, Crispo, 
Johnson, & Price, 2010; Meaney, Griffin, & Bohler, 
2009; Steinberg, Bringle, & Williams, 2010). Students’ 
successful service learning project experience could 
lead to a higher perceived usefulness of the course con-
tent and materials and better attitude and intention to 
accept and use the course materials (Evangelopoulos, 
Sidorova, & Riolli, 2003). Prior research also indicates 
that service learning that integrates academic content 
and community service improves students’ academic 
interest and their attitude and motivation for learn-
ing, which leads to improved student engagement 
and retention (Morelli, de Lanerolle, & Tucker, 2012; 
Simonet, 2008).

Service learning also contributes to the development 
of students’ professional and community service ethics. 
Through service learning experience, students learn to 
serve the community with pride and ethical behavior, 
increase their recognition of civic responsibilities and 
social justice, and develop a life-long habit of com-
munity service and civic involvement (Aldas, Crispo, 
Johnson, & Price, 2010; Meaney, Griffin, & Bohler, 
2009; Steinberg, Bringle, & Williams, 2010). Students’ 
successful service learning project experience could 
lead to a higher perceived usefulness of the course con-
tent and materials and better attitude and intention to 
accept and use the course materials (Evangelopoulos, 
Sidorova, & Riolli, 2003). Prior research also indicates 
that service learning that integrates academic content 
and community service improves students’ academic 
interest and their attitude and motivation for learn-
ing, which leads to improved student engagement 
and retention (Morelli, de Lanerolle, & Tucker, 2012; 
Simonet, 2008).

Service learning may occur in various forms based 
on different models. Heffernan (2001) identifies and 
describes six models for service learning. Table 1 below 
summarizes the six models, the student role, and the 
stated benefit for each model. These models primar-
ily reflect the types of service learning activities and 
emphasize the perspective of the curricular design 
while ignoring the specific knowledge and skill objec-
tives for student learning. The models are generic and 
not specifically designed for a certain discipline.

TABLE 1: HEFFERNAN’S SERVICE LEARNING (SL) MODELS

MODEL STUDENT ROLE BENEFIT

DISCIPLINE-BASED SL MODEL
Regular presence in the community and 
reflection on course content

Improve understanding of theoretical 
concepts

PROBLEM-BASED SL MODEL
Serve as “consultants” on specific 
community problem or need

Alleviate logistic difficulties for regular 
weekly commitments

CAPSTONE COURSE MODEL
Apply previous course work to relevant 
service work in the community

Help students transition from theory 
to practice

SERVICE INTERNSHIP MODEL
Work 10 – 20 hours a week in the community 
with faculty guidance

Develop skills while seeing contribution 
to the community

COMMUNITY-BASED ACTION 
RESEARCH MODEL

Work with faculty to learn research methods 
while serving as advocate for the community

Most effective for small classes and 
groups of students

DIRECTED STUDY 
ADDITIONAL/ 
EXTRA CREDIT MODEL

Work with an instructor to complete 
additional work or more in-depth work on a 
subject for additional credit

Good choice for self-directed and 
motivated students

Project-based Curricular Service Learning for Cybersecurity Education Project-based Curricular Service Learning for Cybersecurity Education
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Nejmeh (2012) offers a more fine-grained three-
dimensional model, which includes project types, 
activity range, and project mode for service learning. 
Compared with Heffernan’s models, Nejmeh’s three-
dimensional model provides more specific categories 
of service learning activities with expected focus and 
skills. It is also practically more relevant to service 
learning in computing and cybersecurity education as 
the descriptions and examples are specifically based 
on computer and information science disciplines and 
sub-disciplines. Table 2 summarizes the three dimen-
sions of this model.

METHODOLOGY 

The study in this paper is based on a planned longitu-
dinal study using a community-based service learning 
project assignment required for an undergraduate 
credit course in cybersecurity conducted at a large 
urban public non-profit college in northeast U.S. with 
both online and on-site deliveries. The study period 
is three and a half  years from the Fall 2011 semester 
to the Fall 2014 semester. The service learning project 
assignment is weighted as 10% in the student overall 

course grade. During the last three semesters of the 
research (in spring, summer, and fall of 2014), the 
team work option is added to the project to evalu-
ate student collaboration in service learning. The 
project design for the study includes the following 
topics related to the course content: training/tutor-
ing (sharing cybersecurity knowledge and/or skills), 
professional services (providing expert advice on a 
cybersecurity issue related to the course content), 
system selection (identifying cybersecurity needs and 
recommending solutions), and support/help desk 
(providing technical support and troubleshooting on 
cybersecurity topics). The expected activities involved 
in the service learning project include research, analy-
sis, testing, transition (installation), and assessment of 
cybersecurity issues and solutions. The project deliver-
able is a written report from the student summarizing 
the project experience, activities performed, person(s) 
worked with, accomplishments, and reflections on les-
sons learned and areas for improvement.

The project mode is curricular because it is primarily 
based on the cybersecurity knowledge, concepts, and 
skills in the course content. The project is an enhanced 
or assisted discovery learning process as necessary 
guidance and feedback are given in class. Though in 

PROJECT TYPE ACTIVITY RANGE PROJECT MODE

TRAINING 
(share knowledge or skills)

PROFESSIONAL SERVICES 
(provide expert advice)

SYSTEM SELECTION 
(identify system needs and 
recommend solutions)

SUPPORT/HELP DESK 
(provide customer support)

CUSTOM DEVELOPMENT 
(develop custom applications)

PRODUCT DEVELOPMENT 
(develop common product 
applications)

Research (problem identification and 
concept definition)

Analysis (requirements discovery, docu-
mentation, process/system validation)

Design (architecture and design of data-
base, user interface, communications, 
workflow, report, and solution strategy)

Implementation (system implementation 
with details)

Test (system integration, testing user 
acceptance, and validation of solution 
effectiveness)

Transition (system installation and migra-
tion and delivery of tested system)

Assessment (assessing system or service 
performance, efficiency, effectiveness, and 
value/impact)

Cocurricular (community service completed 
outside classroom; either university-based 
or non-university-based)

Curricular (project completed in the context 
of a college course – common project 
course, subdiscipline-specific project 
course, or an interdisciplinary course)

Hybrid (cooperative style of completing 
a project involving both a cocurricular 
component and a curricular or course-based 
component)

TABLE 2: NEJMEH’S THREE-DIMENSIONAL SERVICE-LEARNING MODEL

Project-based Curricular Service Learning for Cybersecurity Education Project-based Curricular Service Learning for Cybersecurity Education
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curricular mode, the project gives students abundant 
freedom to discover and pursue their specific topics 
of interest. Students’ project reports are evaluated 
with feedback from the instructor. The total number 
of participants in the service learning project is 296 
registered students from 11 sections of the course in 
3.5-year research period. The following section pres-
ents the data, findings, and discussions from the study. 

FINDINGS AND DISCUSSIONS 

The total number of participants in the service 
learning project is 296 registered students from 11 
sections of the course in 3.5-year research period. 
Table 3 summarizes the data on the project type and 
activity range of the service learning reports submit-
ted by the students. The Category column shows the 

specific project type and the activity range of student 
submissions. The Total column shows the total count 
of each category. The Percentage column shows the 
percentage of each category relative to the total sub-
ject population (296).

The data in Table 3 shows a variety of project types 
and a wide range of activities, which involve heavy 
hands-on experience of applying the knowledge and 
skills from the course to real world situations in the 
community. The project types include training/tutor-
ing, professional service, recommendation on system 
selection, and technical support and troubleshoot-
ing on various cybersecurity topics covered in the 
course. The service activity range includes research, 
analysis, system testing, system installation, and 
performance assessment. The three-semester team 
work data shows that nearly half of the students 
voluntarily participated in team work, which is an 

TABLE 3: SUMMARY OF DATA ON PROJECT TYPE, ACTIVITY RANGE, AND TEAM WORK

CATEGORY TOTAL PERCENTAGE

PROJECT 
TYPE

Training/tutoring (sharing cybersecurity knowledge and/or skills, such as on 
various cybersecurity risks) 194 65.54%

Professional services (providing expert advice on a cybersecurity issue related 
to the course content) 21 7.09%

System selection (identifying cybersecurity needs and recommending solutions) 18 6.08%

Support (providing technical support and troubleshooting on cybersecurity topics) 63 21.28%

ACTIVITY 
RANGE

Research (problem identification and concept definition) 65 21.96%

Analysis (requirements discovery, documentation, process/system validation) 82 27.70%

Test (system integration, testing user acceptance, and validation of solution 
effectiveness) 55 18.58%

Transition (system installation and migration and delivery of tested system) 51 17.22%

Assessment (assessing system or service performance, efficiency, effectiveness, 
and value/impact) 43 14.53%

TEAM 
WORK

A team of two collaborates on a service learning project with individual reports 
submitted; team work is optional.

37 46.83%

Project-based Curricular Service Learning for Cybersecurity Education Project-based Curricular Service Learning for Cybersecurity Education
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indicator of substantial interest in collaboration with 
others. Students performing the training or service 
as well as the trainees and recipients of the student 
service have reported remarkable experiences of 
knowledge discovery on important cybersecurity 
concepts. Additionally, students reported progress 
and achievement in conducting hands-on activities 
on important cybersecurity issues, such as cyber-
security and privacy research, and the selection, 
installation, configuration, and assessment of anti-
virus and firewall protection solutions and products 
to secure valuable personal computers and data.

The hands-on application experience from the 
service learning has contributed significantly to 
students’ success and enjoyment in learning. Over 
90% of the student participants in the service learn-
ing project have reported a positive, enjoyable, and 
worthwhile experience of using their knowledge 
and skills, sharing their knowledge with the com-
munity, and discovering and learning something 
new on the cybersecurity topics for their project. The 
longitudinal assessment results also support stu-
dents’ improvement in learning through the service 
learning project. The course success rate among the 
student participants of the service learning project 
in the 3.5-year study period is over 91%, which is 
13% higher than the average success rate among the 
students in this course without the service learning 
project during the previous three years. The course 
success rate among the team work participants is 
over 96% among the three semesters in 2014 with the 
team work option. 

The service learning project experience has also 
developed students’ reflection habit and critical 
thinking skills, which are essential to their success 
in learning. Critical reflection is a fundamental 
component of all service learning experiences and 
pedagogy, which is especially important for STEM 
disciplines to assess and critique the community’s 
technology needs and the impact of service learning 
projects (George, 2012). All the reports submitted 
for the service learning projects include a section 
of reflection and comments on the experience. For 
example, many students were surprised that the 
people they worked with had no idea about basic 
computer protection knowledge and skills. Most 
students have also reported that they realized that 

they need to learn more about a certain topic to do 
better on the service, such as analyzing computer 
data communications using a network analyzer. 

The service learning project has also developed and 
improved students’ professionalism and community 
service ethics. Professional and ethical behavior is 
especially important for information systems profes-
sionals as sensitive systems and information are often 
at stake (Hilton & Mowry, 2012). Professional and 
ethical behavior with a strong sense of responsibility 
and care for the well-being of others in the commu-
nity is even more important for information systems 
security issues. Students have reported discovery 
of the importance of legal and ethical rules and 
guidelines for cybersecurity professionals, such as 
HIPPA for dealing with private health information 
in digital format. The majority of the students have 
reported great pleasure and pride in helping oth-
ers in the community through the service learning 
project. The majority of the trainees and recipients 
of the service have reported positive behavior of the 
students, including being “responsible,” “profes-
sional,” “caring,” “knowledgeable,” “helpful,” and 
“patient”. The observation data is collected from the 
required confirmation letters signed by the recipients 
of the student service. 

Another important reward for students in the service 
learning is the improvement in their attitude and 
motivation for learning, which will have a long-term 
positive effect on their future education and careers. 
The majority of the participating students have 
reported that the service learning project is such an 
enriching and rewarding learning experience that 
they found the cybersecurity course content very 
useful and interesting and would love to pursue fur-
ther education and a future career in this field. The 
increased interest and motivation for learning may 
be attributed to the actual hands-on learning, service 
ethics, and reinforcement from the community as a 
result of the service learning experience.  

Project-based Curricular Service Learning for Cybersecurity Education Project-based Curricular Service Learning for Cybersecurity Education
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CONCLUSION

The project-based curricular service learning used 
in this 3.5-year study has improved students’ overall 
academic success as well as their reflection and critical 
thinking, professional and community service ethics, 
and attitude and motivation for knowledge discovery 
and sharing. There are several areas for improve-
ment in the future. First, given the initial success of 
the service learning project, more course work and 
weight in grading could be devoted to service learn-
ing to maximize students’ learning through service. 
Also, a solution is needed to facilitate increased team 
work and collaboration in the service learning projects 
among online students who are geographically scat-
tered. Students working together on service learning 
team projects need frequent physical presence together 
and communication. A potential solution is to design 
virtual service learning projects where students could 
perform service components individually in distrib-
uted locations while collaborating and communicating 
online in research, analysis, discussions, and assess-
ment. In addition, it would be desirable to develop 
stable partnerships with community and industry 
organizations who can provide more frequent and 
regular opportunities for students to perform service 
learning projects. 
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INTRODUCTION

Recent cybersecurity incidents involving data theft 
that impacted federal government employees and 
contractors (U.S. Office of Personnel Management, 
2015) have heightened the importance of designing 
and maintaining sound cyber defense mechanisms 
that include proactive, preventative, and reactive 
cybersecurity measures. Securing cyber systems on a 
continual basis against multiple types of malicious 
attacks (e.g. confidential data theft, unauthorized web 
server access, or denial-of-service) is a challenging 
problem both from a research standpoint and in prac-
tice. Cyber system administrators (defenders) typically 
have limited available resources to allocate among a 
variety of protective measures. Cyber attackers, how-
ever, operate at relatively low costs. Thus, developing 
a resilient cyber system that can support mission goals 
when compromised is an important problem and is the 
topic of discussion within this paper.

To effectively allocate protective resources against 
multiple (often unknown) attackers, a cyber defender 
must account for uncertainties in attack types 
and cyber system operational behaviors over time. 
Mathematical modeling and analysis might provide 
a mechanism for structuring this resource allocation 
decision-making process. In particular, game-theoretic 
approaches involving strategic decision-makers 
(i.e. cyber attackers and defenders) with differing 

theories to propagate various uncertainties 
in the attacker payoffs. An additional goal 
of this paper is to increase awareness about 
this problem domain among practitioners and 
researchers, and encourage further advance-
ments in this area.

ABSTRACT

Recent cybersecurity incidents involving 
data theft from the U.S. Office of Personnel 
Management have heightened the importance 
of designing resilient cyber systems that can 
support mission goals when compromised. 
However, securing such systems on a con-
tinual basis against multiple types of malicious 
attacks is an ongoing challenge. Cyber sys-
tem administrators (defenders) typically have 
limited protective resources that need to be 
effectively allocated to thwart cyber attackers 
operating at relatively low costs. Game theory-
based mathematical modeling approaches 
(involving strategic decision-makers) are 
increasingly being adopted for such cyber-
security challenges. This paper contributes 
to the state-of-the-art by highlighting the 
importance of quantifying several sources and 
types of uncertainty impacting cyber attacker 
payoffs (defined as a penalty or reward based 
on actions) within this problem space. These 
uncertainties arise due to randomness or lack 
of knowledge associated with cyber system 
operational behaviors, attacker types, and 
attack and defense actions over time. This 
paper explores the mathematical treatment of 
such mixed payoff uncertainties. A probabilis-
tic modeling framework for representing cyber 
attacker payoffs under uncertainty is presented 
and a conditional probabilistic reasoning 
approach is adopted to organize the dependen-
cies between a cyber system’s state, attacker 
type, player actions, and state transitions. This 
also enables the application of probabilistic 
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objectives have been researched extensively over the 
past decade (Roy et al., 2010; Liang and Xiao, 2013). 
Prior studies indicate that further research should 
include enhanced focus on characterizing attacker 
payoff (defined as a penalty or reward received by a 
player based on actions within a game-theoretic set-
ting) functions. Attacker penalty refers to the attack 
planning and execution costs. Attacker reward may 
be represented as the damage and disruption that fol-
lows a successful attack. These cyber attacker payoff 
functions are typically subject to uncertainties (due 
to randomness and lack of knowledge) associated 
with system operational states, attacker types, player 
actions, and state transitions.

This paper focuses on the development of a proba-
bilistic modeling framework for representing cyber 
attacker payoffs under uncertainty. Various sources 
of payoff uncertainty include: (1) cyber system state, 
(2) attacker type, (3) choice of player actions, and (4) 
cyber system state transitions over time. A conditional 
probabilistic reasoning approach is adopted to orga-
nize the dependencies between a cyber system’s state, 
attacker type, player actions, and state transitions. 
This also enables the application of probabilistic theo-
ries to propagate various uncertainties in the attacker 
payoffs. The paper aims to highlight this important 
uncertainty quantification problem space to the cyber-
security research community and discusses classes of 
stochastic games for cybersecurity, sources and types 
of attacker payoff uncertainties, and approaches for 
representation and propagation of these uncertainties 
within a probabilistic setting.

STOCHASTIC GAMES FOR CYBERSECURITY

Overview and Context

Game theory is a mathematical tool that aids deci-
sion-making between multiple entities acting in a 
system towards individual perceived outcomes. A 
game consists of two or more entities (or players), 
each equipped with a set of actions. Play of the game 
involves players choosing actions in some order result-
ing in a change in system state. Players assign values to 
such states; this value function is the primary decision 
driver within the game. Games are typically differen-
tiated by how many players are involved, the order 
and length of play, whether the players cooperate or 

compete against one another, and by how much infor-
mation each player possesses of past play as well as of 
each other’s system state values.

A simple example of a game is the well-known 
Prisoner’s Dilemma (Stanford Encyclopedia of 
Philosophy, 2014). This game involves two players, 
both of whom are being questioned separately by 
authorities who believe at least one of the players has 
committed some crime. Either player may choose to 
cooperate with the authorities by confessing to the 
crime, or with each other by abstaining from talking 
to the interrogators. If  both players talk, then they 
receive more time in prison than if  they had both 
stayed silent. However, if  only one player confesses, 
then he or she receives the largest prison sentence of 
any scenario, while the other (silent) player is free 
of any sentence. Since time in prison is valued as a 
penalty, the goal of each player is to take the action at 
some point in time which he or she believes will result 
in serving the least amount of time in prison.

Once the structure of the game is known, players 
must make decisions as to how they maneuver within 
the game by choosing a strategy. For example, one 
player in the Prisoner’s Dilemma game might choose 
to confess to the crime immediately, believing that the 
other player might do the same. Do these individu-
als make their plays in response to the other’s actions 
or simultaneously? Do they know which play each 
other will make or is some uncertainty placed on 
their choices? A common way for players to choose a 
(robust) strategy is to find a type of equilibrium or a 
set of player strategies where each is a best response to 
the others. In other words, if  everyone committed to 
their respective strategy, then no single player would 
benefit from deviating.

In the context of cybersecurity, game theory plays a 
key role in helping defenders of cyber systems limit 
the impact of adversarial events (Liang and Xiao, 
2013). For example, a cyber system administrator 
familiar with the network architecture, valuation of 
information contained within firewalls, and the types 
of attackers that would be interested in such informa-
tion may utilize the theory of games to weigh certain 
sequences of protective actions against hypothetical 
attackers and ultimately plan more strategically under 
resource constraints.   Figure 1 presents classes of 

FIGURE 1: TYPES OF NON-COOPERATIVE GAME MODELS FOR CYBERSECURITY (ADAPTED FROM ROY ET AL., 2010) 
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non-cooperative games depicted by choosing a path 
from the top-most level to the bottom. In the next 
section, we formally define these concepts. 

Concepts and Notation

A game is a tuple (𝑃,𝒜,𝒰), where 𝑃 is a set of 
players, 

Figure 1.  Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)  
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function . Let us define  and  for each .  If , , and the 
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game.  If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is 
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time.  If each player acts only 
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game 
dynamic.  The game is simultaneous if players act at the same time, otherwise it is sequential.  Each 
action tuple , where  is called a play of the game and has a value, or 
payoff, of  to player .  If  for each , the game is a zero-sum game,
otherwise it is called a general-sum game.  If the action sets of all players are identical and the utility 
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise 
they are asymmetric.

A strategy set for a player  is the set , and each 
vector  is called a strategy.  A strategy  for any player is said to be pure if the support 
|supp( )| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the 
actions to be taken).  Given a tuple of player strategies , where , the 
expected payoff for player  is the value of the function .
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, the game is a zero-sum game, otherwise 

compete against one another, and by how much infor-
mation each player possesses of past play as well as of 
each other’s system state values.

A simple example of a game is the well-known 
Prisoner’s Dilemma (Stanford Encyclopedia of 
Philosophy, 2014). This game involves two players, 
both of whom are being questioned separately by 
authorities who believe at least one of the players has 
committed some crime. Either player may choose to 
cooperate with the authorities by confessing to the 
crime, or with each other by abstaining from talking 
to the interrogators. If  both players talk, then they 
receive more time in prison than if  they had both 
stayed silent. However, if  only one player confesses, 
then he or she receives the largest prison sentence of 
any scenario, while the other (silent) player is free 
of any sentence. Since time in prison is valued as a 
penalty, the goal of each player is to take the action at 
some point in time which he or she believes will result 
in serving the least amount of time in prison.

Once the structure of the game is known, players 
must make decisions as to how they maneuver within 
the game by choosing a strategy. For example, one 
player in the Prisoner’s Dilemma game might choose 
to confess to the crime immediately, believing that the 
other player might do the same. Do these individu-
als make their plays in response to the other’s actions 
or simultaneously? Do they know which play each 
other will make or is some uncertainty placed on 
their choices? A common way for players to choose a 
(robust) strategy is to find a type of equilibrium or a 
set of player strategies where each is a best response to 
the others. In other words, if  everyone committed to 
their respective strategy, then no single player would 
benefit from deviating.

In the context of cybersecurity, game theory plays a 
key role in helping defenders of cyber systems limit 
the impact of adversarial events (Liang and Xiao, 
2013). For example, a cyber system administrator 
familiar with the network architecture, valuation of 
information contained within firewalls, and the types 
of attackers that would be interested in such informa-
tion may utilize the theory of games to weigh certain 
sequences of protective actions against hypothetical 
attackers and ultimately plan more strategically under 
resource constraints.   Figure 1 presents classes of 
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considered rational if  he or she chooses a strategy Player  is deemed rational if decisions made at any point in time are always “best,” i.e. player  is 

considered rational if he or she chooses a strategy  which maximizes his or her expected payoff 
, given some information about  for ; otherwise, the player is irrational.  In static and 

simultaneous games, a given tuple of strategies  is called a Nash equilibrium if for each player 
, the value of  is locally optimum, i.e.  for each , with  whenever 
.

Figure 2 presents the concept of Nash Equilibrium pictorially using the Prisoner's Dilemma example.  
Here we have two heatmaps, the left corresponding to the expected payoffs for Player 1 and the right to 
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Figure 1.  Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)  

<B head>Concepts and Notation 
A game is a tuple , where  is a set of players,  is the collection of each 
player’s set of actions, , and  is the collection of each player’s utility or payoff 
function . Let us define  and  for each .  If , , and the 
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game.  If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is 
(implicitly) called a discrete game.
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action tuple , where  is called a play of the game and has a value, or 
payoff, of  to player .  If  for each , the game is a zero-sum game,
otherwise it is called a general-sum game.  If the action sets of all players are identical and the utility 
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise 
they are asymmetric.

A strategy set for a player  is the set , and each 
vector  is called a strategy.  A strategy  for any player is said to be pure if the support 
|supp( )| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the 
actions to be taken).  Given a tuple of player strategies , where , the 
expected payoff for player  is the value of the function .
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If  every player is aware of every other player’s payoff 
function and type, the game has complete informa-
tion; otherwise it has incomplete information. Further, 
if  every player knows all the past plays of the game, 
then the game has perfect information and otherwise 
imperfect information. A hierarchical diagram of these 
concepts is found in Figure 1. Notice that whenever 
a game is static, there can be no past information 
to learn, and hence all static games are, by default, 
imperfect games. 

To relate these concepts back to our example, the 
Prisoner’s Dilemma, we observed that the original 
interpretation of the problem is a finite, two-player, 
non-cooperative, static, simultaneous, general-sum 
game with imperfect and complete information and 
symmetric payoffs. 

 � It is considered a finite game since there are 
only two players, each with two distinct actions; 
if  the players had infinitely many actions, e.g. 
degrees of involvement with distinct payoffs 
for each, or if  play of the game continued 
on for an infinite number of rounds, then it 
would be classified as an infinite game. 

 �  It is a non-cooperative game since the players 
cannot speak to one another (and we assume 
they have not planned their choices before 
being accused of the crime) and since they 
cannot form a coalition against another 
party; if communication were allowed then 
such a game would be a cooperative game. 

 �  It is a static game, since each player gets one 
chance to confess before play is over; if  the 
game had multiple stages (e.g., multiple crimes 
to confess to), then it would become dynamic.

 �  It is a simultaneous game, in essence, since neither 
player learns about the other’s decision before 
play is over; if, however, once the first player 
confessed, the second one was notified before 
acting, this would change the game to sequential.

 �  It is a general-sum game since the sum of the 
payoffs over the players for any action is non-zero; 
if  for every play one player lost in value what 
the other gained (e.g., monetary settlements), 
then this would become a zero-sum game. 

 �  It is a game with imperfect information since 
there is no past; if, however, the players had 
been in this situation in the past for a dif-
ferent crime and the players’ past decisions 
influenced present choices, then this would 
become a game with perfect information.

 �  It is a game with complete information since the 
players know each other’s payoffs; if  the players 
played according to an uncertain utility func-
tion of each play’s payoff (e.g. one player gets 
paid to serve a longer sentence) which is further 
unknown to the opposing player, then we would 
have a game with incomplete information.

 �  Finally, the game has symmetric payoffs since 
each player receives the same sentence in 
similar scenarios; if, for example, one player 
had a previous record and would receive 
more time in jail upon confessing, then the 
game would become an asymmetric game.

To recap, we have the following high-level concepts 
categorized with some notation and key notes:

 � players (

Figure 1.  Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)  

<B head>Concepts and Notation 
A game is a tuple , where  is a set of players,  is the collection of each 
player’s set of actions, , and  is the collection of each player’s utility or payoff 
function . Let us define  and  for each .  If , , and the 
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game.  If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is 
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time.  If each player acts only 
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game 
dynamic.  The game is simultaneous if players act at the same time, otherwise it is sequential.  Each 
action tuple , where  is called a play of the game and has a value, or 
payoff, of  to player .  If  for each , the game is a zero-sum game,
otherwise it is called a general-sum game.  If the action sets of all players are identical and the utility 
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise 
they are asymmetric.

A strategy set for a player  is the set , and each 
vector  is called a strategy.  A strategy  for any player is said to be pure if the support 
|supp( )| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the 
actions to be taken).  Given a tuple of player strategies , where , the 
expected payoff for player  is the value of the function .
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each, or if play of the game continued on for an infinite number of rounds, then it would be 
classified as an infinite game.   

• It is a non-cooperative game since the players cannot speak to one another (and we assume they 
have not planned their choices before being accused of the crime) and since they cannot form a 
coalition against another party; if communication were allowed then such a game would be a 
cooperative game.   

• It is a static game, since each player gets one chance to confess before play is over; if the game 
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before 
play is over; if, however, once the first player confessed, the second one was notified before 
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero; 
if for every play one player lost in value what the other gained (e.g. monetary settlements), then 
this would become a zero-sum game.   

• It is a game with imperfect information since there is no past; if, however, the players had been in 
this situation in the past for a different crime and the players’ past decisions influenced present 
choices, then this would become a game with perfect information. 

• It is a game with complete information since the players know each other’s payoffs; if the players 
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid 
to serve a longer sentence) which is further unknown to the opposing player, then we would have 
a game with incomplete information. 

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar 
scenarios; if, for example, one player had a previous record and would receive more time in jail 
upon confessing, then the game would become an asymmetric game. 

To recap, we have the following high-level concepts categorized with some notation and key notes: 
• players ( , )

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’ 

• actions (  for )
o player 's action is an element , possibly infinitely many 
o a play is a tuple  in the set 

• payoff functions (  for )
o each player  places a value  on each play 
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect) 
o complete information means each player knows all others’ payoff values for each play 

(know value of each possible outcome) 
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes) 
• play (sequential/simultaneous; static/dynamic) 

o simultaneous means no information on play before choosing one’s own 
o static means only one act per player

<B head> Game Implications for Cyber Systems 
In cybersecurity, we typically model a non-cooperative game in which players act and where system state 
transitions reflect changes in the network’s operational behavior.  To this end, we augment the game tuple 
to include the finite—albeit generally very large—system state set , and the transition function 

 taking a state  and a play , and transitioning it to the next state .  The 

, possibly infinitely many

 � a play is a tuple 

each, or if play of the game continued on for an infinite number of rounds, then it would be 
classified as an infinite game.   

• It is a non-cooperative game since the players cannot speak to one another (and we assume they 
have not planned their choices before being accused of the crime) and since they cannot form a 
coalition against another party; if communication were allowed then such a game would be a 
cooperative game.   
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Figure 1.  Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)  

<B head>Concepts and Notation 
A game is a tuple , where  is a set of players,  is the collection of each 
player’s set of actions, , and  is the collection of each player’s utility or payoff 
function . Let us define  and  for each .  If , , and the 
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game.  If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is 
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time.  If each player acts only 
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game 
dynamic.  The game is simultaneous if players act at the same time, otherwise it is sequential.  Each 
action tuple , where  is called a play of the game and has a value, or 
payoff, of  to player .  If  for each , the game is a zero-sum game,
otherwise it is called a general-sum game.  If the action sets of all players are identical and the utility 
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise 
they are asymmetric.

A strategy set for a player  is the set , and each 
vector  is called a strategy.  A strategy  for any player is said to be pure if the support 
|supp( )| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the 
actions to be taken).  Given a tuple of player strategies , where , the 
expected payoff for player  is the value of the function .

 places a value 

each, or if play of the game continued on for an infinite number of rounds, then it would be 
classified as an infinite game.   

• It is a non-cooperative game since the players cannot speak to one another (and we assume they 
have not planned their choices before being accused of the crime) and since they cannot form a 
coalition against another party; if communication were allowed then such a game would be a 
cooperative game.   

• It is a static game, since each player gets one chance to confess before play is over; if the game 
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before 
play is over; if, however, once the first player confessed, the second one was notified before 
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero; 
if for every play one player lost in value what the other gained (e.g. monetary settlements), then 
this would become a zero-sum game.   

• It is a game with imperfect information since there is no past; if, however, the players had been in 
this situation in the past for a different crime and the players’ past decisions influenced present 
choices, then this would become a game with perfect information. 

• It is a game with complete information since the players know each other’s payoffs; if the players 
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid 
to serve a longer sentence) which is further unknown to the opposing player, then we would have 
a game with incomplete information. 

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar 
scenarios; if, for example, one player had a previous record and would receive more time in jail 
upon confessing, then the game would become an asymmetric game. 

To recap, we have the following high-level concepts categorized with some notation and key notes: 
• players ( , )

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’ 

• actions (  for )
o player 's action is an element , possibly infinitely many 
o a play is a tuple  in the set 

• payoff functions (  for )
o each player  places a value  on each play 
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect) 
o complete information means each player knows all others’ payoff values for each play 

(know value of each possible outcome) 
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes) 
• play (sequential/simultaneous; static/dynamic) 

o simultaneous means no information on play before choosing one’s own 
o static means only one act per player

<B head> Game Implications for Cyber Systems 
In cybersecurity, we typically model a non-cooperative game in which players act and where system state 
transitions reflect changes in the network’s operational behavior.  To this end, we augment the game tuple 
to include the finite—albeit generally very large—system state set , and the transition function 

 taking a state  and a play , and transitioning it to the next state .  The 

 on each play  

each, or if play of the game continued on for an infinite number of rounds, then it would be 
classified as an infinite game.   

• It is a non-cooperative game since the players cannot speak to one another (and we assume they 
have not planned their choices before being accused of the crime) and since they cannot form a 
coalition against another party; if communication were allowed then such a game would be a 
cooperative game.   

• It is a static game, since each player gets one chance to confess before play is over; if the game 
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before 
play is over; if, however, once the first player confessed, the second one was notified before 
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero; 
if for every play one player lost in value what the other gained (e.g. monetary settlements), then 
this would become a zero-sum game.   

• It is a game with imperfect information since there is no past; if, however, the players had been in 
this situation in the past for a different crime and the players’ past decisions influenced present 
choices, then this would become a game with perfect information. 

• It is a game with complete information since the players know each other’s payoffs; if the players 
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid 
to serve a longer sentence) which is further unknown to the opposing player, then we would have 
a game with incomplete information. 

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar 
scenarios; if, for example, one player had a previous record and would receive more time in jail 
upon confessing, then the game would become an asymmetric game. 

To recap, we have the following high-level concepts categorized with some notation and key notes: 
• players ( , )

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’ 

• actions (  for )
o player 's action is an element , possibly infinitely many 
o a play is a tuple  in the set 

• payoff functions (  for )
o each player  places a value  on each play 
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect) 
o complete information means each player knows all others’ payoff values for each play 

(know value of each possible outcome) 
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes) 
• play (sequential/simultaneous; static/dynamic) 

o simultaneous means no information on play before choosing one’s own 
o static means only one act per player

<B head> Game Implications for Cyber Systems 
In cybersecurity, we typically model a non-cooperative game in which players act and where system state 
transitions reflect changes in the network’s operational behavior.  To this end, we augment the game tuple 
to include the finite—albeit generally very large—system state set , and the transition function 

 taking a state  and a play , and transitioning it to the next state .  The 

 � may not be reciprocal or zero-sum

 � information ([in]complete, [im]perfect)

 � complete information means each player 
knows all others’ payoff values for each play 
(know value of each possible outcome)

 � perfect means you know all previous 
plays (know history of plays and 
corresponding outcomes)

A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs A Probabilistic Framework for Quantifying Mixed Uncertainties in Cyber Attacker Payoffs

 17NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3



 � play (sequential/simultaneous; static/dynamic)

 � simultaneous means no information 
on play before choosing one’s own

 � static means only one act per player

Game Implications for Cyber Systems

In cybersecurity, we typically model a non-cooperative 
game in which players act and where system state 
transitions reflect changes in the network’s operational 
behavior. To this end, we augment the game tuple to 
include the finite—albeit generally very large—system 
state set 

each, or if play of the game continued on for an infinite number of rounds, then it would be 
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(know value of each possible outcome) 
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outcomes) 
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<B head> Game Implications for Cyber Systems 
In cybersecurity, we typically model a non-cooperative game in which players act and where system state 
transitions reflect changes in the network’s operational behavior.  To this end, we augment the game tuple 
to include the finite—albeit generally very large—system state set , and the transition function 
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Figure 1.  Types of Non-Cooperative Game Models for Cybersecurity (adapted from Roy et al., 2010)  

<B head>Concepts and Notation 
A game is a tuple , where  is a set of players,  is the collection of each 
player’s set of actions, , and  is the collection of each player’s utility or payoff 
function . Let us define  and  for each .  If , , and the 
number of rounds of play are all finite, then we say the game is a finite game; otherwise it is an infinite
game.  If each action set is continuous, we say the game is continuous, and if each such set is discrete, it is 
(implicitly) called a discrete game.

Players play the game by choosing actions, or acting, at specified points in time.  If each player acts only 
once in the game, it is said to be a static game, otherwise multiple stages of actions makes the game 
dynamic.  The game is simultaneous if players act at the same time, otherwise it is sequential.  Each 
action tuple , where  is called a play of the game and has a value, or 
payoff, of  to player .  If  for each , the game is a zero-sum game,
otherwise it is called a general-sum game.  If the action sets of all players are identical and the utility 
functions are independent of who played each action, then the game has symmetric payoffs, and otherwise 
they are asymmetric.

A strategy set for a player  is the set , and each 
vector  is called a strategy.  A strategy  for any player is said to be pure if the support 
|supp( )| = 1, and otherwise it is called a mixed strategy (i.e. if the play assigns some uncertainty to the 
actions to be taken).  Given a tuple of player strategies , where , the 
expected payoff for player  is the value of the function .

 are limited to 
only those that make sense when the system is in the 
state 

available actions for each player  are limited to only those that make sense when the system is in the 
state  (e.g. a network administration will not shut down a file server when it is running normally, but he 
or she may do so when an adversary is observed stealing information from it); thus we distinguish these 
subsets with a superscript, .  Furthermore, any play  may probabilistically transition the state from 
to many other states .  We define this probabilistic function as , and typically rewrite 
it as , meaning  is the conditional probability function that yields the likelihood of sending 
the system from state  to  whenever play  is made. 

In the following section, various sources and types of uncertainties within game formulations are 
discussed.  These uncertainties may arise from the system, player types/actions, and payoffs.

<A head> Uncertainties in Cybersecurity Games 

<B head> Modeling Preliminaries 
In this paper, the probabilistic modeling framework for characterizing uncertain cyber attacker payoffs 
contains basic concepts from probability theory and utility theory.  A few key concepts are briefly 
described below.  Interested readers may refer to Ross (2004) or Clemen and Reilly (2001) for more 
detailed descriptions.       

• Random Variable:  A variable that can take different values (with probabilities) as a result of a 
random phenomenon.  These variables may be discrete (expressed as probability mass functions) 
or continuous (expressed as probability density functions).

• Marginal Probability:  The probability of occurrence of an event ,  that does not account 
for, reference, or depend on another event.  For example, the probability of drawing a card with 
number 9 from a deck of cards is 1/13 (there are four 9’s among 52 cards, so 4/52 = 1/13).   

• Conditional Probability:  The probability of occurrence of an event  given another event 
occurs, .  For example, the probability of drawing a card with diamond given that it has 
number 9 is 1/4 (there are four 9’s and only one with diamond, so 1/4).        

• Joint Probability:  The probability of occurrence of events  and , .  For example, 
the probability of drawing a card with both a diamond and a number 9 is 1/52 (there are only one 
card with diamond and number 9 in a deck of cards, so 1/52).        

• Total Probability Theorem:  Let us assume n mutually exclusive events (events that cannot occur 
simultaneously) ,…,  with corresponding probabilities and ; then according 
to the Total Probability Theorem:  , where  is an event of 
interest and  is the conditional probability of event  given event  occurs.

• Utility:  A concept from economics that is utilized as a measure of preference or satisfaction 
associated with a good or service.  In the context of cybersecurity, it is associated with the 
payoffs that players receive within a game-theoretic setting. 

• Utility Function:  A mathematical function that depends on how a player values the realization of 
an operational state of the cyber system (in terms of dollars or time) and the probability of 
occurrence of that state. Utility functions may also be represented as probability distribution 
functions. 
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action tuple ) of cyber system attacker and defender that depends on both  and  and utility 
function (payoff) of player ,  which is a function of the cyber system, attacker type, and 
player actions.  Let us also assume that the system initially at state  transitions to state  due to 
the action tuple  of the players (i.e., cyber system attacker and defender).  The overarching objective is 
to quantify uncertainty in attacker payoff,  within a probabilistic modeling framework.  In 
the context of cybersecurity, system state  may correspond to different operational conditions of the 
cyber network before, during, and after potential attacks.  Some examples of cyber system states may 
include:  “Normal_operation”, “Httpd_attacked”, “Website_defaced”, and “Network_shut_down” (Lye 
and Wing, 2005).  Attacker type  refers to the capabilities in terms of skills and resources available to a 
cyber system attacker.  Actions of the cyber system attacker and defender may or may not cause the 
system to transition from one state of operation to another.  Examples of attacker actions may involve 
installing a sniffer, cracking a server access password, or capturing data whereas a defender may pursue 
actions including installing sniffer detectors, removing virus and compromised accounts, or restoring 
websites.    

<B head> Sources of Uncertainty 
A non-cooperative cybersecurity game may involve the defender not having complete information about 
the system (due to partial observability) or the attacker (due to multiple attack possibilities at a point in 
time).  These information gaps may include: (1) initial system state, (2) type of attacker, (3) combinations 
of attacker and defender actions, and (4) effects of these actions on system state transitions. We adopt a 
probabilistic framework to account for this lack of information and model these parameters as discrete or 
continuous random variables with appropriate uncertainty distributions.  Expert judgment and/or available 
data from simulation experiments may be utilized to select the type of random variables and statistical 
methods to estimate these distributions and their parameters.  Further, these uncertainties may be 
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game 
may be analyzed.  

Our conceptual uncertainty model begins by assigning probability  for initial system state  at the 
start of the game.  Conditional probability  is used to define attacker type  conditioned on initial 
system state , since skills and resources required for an attack depend on initial system state.  The action 
tuple , depends on attacker type and system state—so we define probability of  as .  State 
transition probability from system state  to state  is represented as .  Payoff utility 
function of a player  depends on the initial system state, attacker type, action tuple, and new system state 
as .  In the following sections we describe methodologies for modeling these 
probabilities and propagating the uncertainty to player payoff utility  in terms of both marginal and 
conditional probabilities.

<B head> Uncertainty Representations 
A comprehensive modeling approach to securing a cyber system must account for the uncertain threats 
and system operational behaviors under time-varying conditions.  Uncertainties in quantitative risk 
models arise from inherent randomness in samples (aleatory) or incomplete knowledge (epistemic) about 
fundamental phenomena (Paté-Cornell, 1996).  A key distinction between these two types of uncertainty 
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty 
is not reducible.  These uncertainties may be present in the modeling elements/variables or the model 
itself.   Thus, appropriate representation and propagation of uncertainty within these models is essential 
for distinguishing between the knowns and unknowns.  In this paper, we describe the representation of 
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of 
interest.
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methods to estimate these distributions and their parameters.  Further, these uncertainties may be 
propagated to the quantities of interest (attacker payoff here) and its effect on the outcome of the game 
may be analyzed.  

Our conceptual uncertainty model begins by assigning probability  for initial system state  at the 
start of the game.  Conditional probability  is used to define attacker type  conditioned on initial 
system state , since skills and resources required for an attack depend on initial system state.  The action 
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as .  In the following sections we describe methodologies for modeling these 
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fundamental phenomena (Paté-Cornell, 1996).  A key distinction between these two types of uncertainty 
is that epistemic uncertainty can be reduced by gathering more information, whereas aleatory uncertainty 
is not reducible.  These uncertainties may be present in the modeling elements/variables or the model 
itself.   Thus, appropriate representation and propagation of uncertainty within these models is essential 
for distinguishing between the knowns and unknowns.  In this paper, we describe the representation of 
uncertainties in input variables and discuss the propagation of these uncertainties to output variables of 
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for distinguishing between the knowns and unknowns.  In this paper, we describe the representation of 
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Uncertainty Representations

A comprehensive modeling approach to securing a 
cyber system must account for the uncertain threats 
and system operational behaviors under time-varying 
conditions. Uncertainties in quantitative risk models 
arise from inherent randomness in samples (aleatory) 
or incomplete knowledge (epistemic) about fun-
damental phenomena (Paté-Cornell, 1996). A key 
distinction between these two types of uncertainty is 
that epistemic uncertainty can be reduced by gather-
ing more information, whereas aleatory uncertainty is 
not reducible. These uncertainties may be present in 
the modeling elements/variables or the model itself. 
Thus, appropriate representation and propagation of 
uncertainty within these models is essential for distin-
guishing between the knowns and unknowns. In this 
paper, we describe the representation of uncertainties 
in input variables and discuss the propagation of these 
uncertainties to output variables of interest. 

Uncertainty from randomness may be addressed 
through the use of statistical probability distributions, 
whereas incomplete knowledge may be represented 
using mathematical intervals (Abrahamsson, 2002). 
Figure 3 presents four uncertainty representations 
(probability distribution, mathematical interval, 
probability bounds, and probability box) for a 
hypothetical variable, X, with uncertain values. A 
probability distribution contains probabilities of 
occurrence of outcomes from a random experiment; 
mathematical interval is a set of real numbers between 
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lower and upper bounds; probability bound refers to a 
probability distribution with uncertain parameter 
values; and probability box represents limits of 
uncertain percentile values (e.g. median is the 50th 
percentile). The choice of uncertainty representation 
depends on data and knowledge associated with the 
variable of interest. Typically, probabilities may be 
defined using a frequentist approach (i.e. as an estimate 
of limiting relative frequency or ratio of the number of 
successful trials to total number of trials) or a Bayesian 
approach (i.e. as degree of belief  with supporting 
information from statistical data, physical models, and 
subjective expert judgments). 

Uncertainty Propagation Methods

Methods for propagating uncertainty to the output 
variables within quantitative models depend on the 
representations associated with the uncertain input 
variables. Let us consider a thought experiment where 
x represents a vector of k uncertain input variables; a 
single input variable is denoted as X ; and the model 
output y is a function of x: y = g (x). We outline 
below three mathematical approaches for uncertainty 
propagation based on probability distributions and 

mathematical intervals. Please note that the list of 
approaches below is not exhaustive and represents 
initial methods identified by the authors for further 
investigation within a cybersecurity setting. For 
additional discussion, interested readers may refer to 
Abrahamsson (2002), Swiler et al. (2009), Walker et al. 
(2010), and Cox (2012).

1. Monte Carlo Sampling Analysis: Let us assume an input 
random variable, X that has a cumulative distribu-
tion function 

investigation within a cybersecurity setting. (For additional discussion, interested readers may refer to 
Abrahamsson, 2002; Swiler et al., 2009; Walker et al., 2010; and Cox, 2012).   

1. Monte Carlo Sampling Analysis:  Let us assume an input random variable, X that has a cumulative 
distribution function  and an inverse cumulative distribution function .
If  is strictly increasing and continuous, then , where , is a real number  such 
that .  To generate a random sample value for an input random variable, X, a random 
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in 
the literature, including simple random sampling (where all samples have equal likelihood of being 
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement) 
(Abrahamsson, 2002)).  This sampled value, r, is then passed through the inverse cumulative 
distribution function  to generate a random sample value, . Similarly, random sample values 
for all k uncertain input variables may be generated resulting in a random sample vector, x.  The 
vector x when passed through the function g(x) produces a random output value of y.  This Monte 
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability 
distribution for the output random variable Y.

2. Interval Analysis:  This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals.  The approach is computationally inexpensive, 
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis.  Let us 
assume two uncertain input variables X1 and X2, represented as intervals  and  respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y = 

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
y =  where 0 is not in .  These basic arithmetic properties 

      may be extended further for evaluating more complex functions, g(x).

3. Two-phase Monte Carlo Sampling Analysis:  In certain applications, stochastic and knowledge-based 
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase” 
sampling approach.  This approach involves two computational sampling loops:  outer and inner.  The 
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains 
variables with stochastic uncertainty.  A single iteration in the outer loop yields a sample (from the 
outer loop variables) that is passed to the inner loop, where several iterations involving samples from 
the inner loop variables are performed.  Each sample combination of outer and inner loop variables 
when passed through a model results in a realization of the output variable of interest.  Thus, several 
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose 
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4.  The sampling scheme 
may be based on multiple approaches, including random sampling or Latin hypercube sampling.  For 
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative 
distribution function  and X2 is represented as an interval .  Given a function g(x) as X1 + 
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations 
from X1.  Given a sample from the interval , several samples (iterations) for X1 may be generated 
using its probability distribution via a Monte Carlo scheme.  The vector x (with several X1 sample 
values and the same X2 sample value) when passed through the function g(x) produces a probability 
distribution for the output random variable, Y.  With multiple samples from the interval  and 
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the 
dispersion of distributions reflects the knowledge-based uncertainty. 
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distribution for the output random variable Y.

2. Interval Analysis:  This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals.  The approach is computationally inexpensive, 
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis.  Let us 
assume two uncertain input variables X1 and X2, represented as intervals  and  respectively.
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outer loop contains input variables with knowledge-based uncertainty and the inner loop contains 
variables with stochastic uncertainty.  A single iteration in the outer loop yields a sample (from the 
outer loop variables) that is passed to the inner loop, where several iterations involving samples from 
the inner loop variables are performed.  Each sample combination of outer and inner loop variables 
when passed through a model results in a realization of the output variable of interest.  Thus, several 
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose 
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4.  The sampling scheme 
may be based on multiple approaches, including random sampling or Latin hypercube sampling.  For 
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative 
distribution function  and X2 is represented as an interval .  Given a function g(x) as X1 + 
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations 
from X1.  Given a sample from the interval , several samples (iterations) for X1 may be generated 
using its probability distribution via a Monte Carlo scheme.  The vector x (with several X1 sample 
values and the same X2 sample value) when passed through the function g(x) produces a probability 
distribution for the output random variable, Y.  With multiple samples from the interval  and 
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the 
dispersion of distributions reflects the knowledge-based uncertainty. 
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for all k uncertain input variables may be generated resulting in a random sample vector, x.  The 
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outer loop variables) that is passed to the inner loop, where several iterations involving samples from 
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when passed through a model results in a realization of the output variable of interest.  Thus, several 
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose 
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4.  The sampling scheme 
may be based on multiple approaches, including random sampling or Latin hypercube sampling.  For 
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative 
distribution function  and X2 is represented as an interval .  Given a function g(x) as X1 + 
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations 
from X1.  Given a sample from the interval , several samples (iterations) for X1 may be generated 
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values and the same X2 sample value) when passed through the function g(x) produces a probability 
distribution for the output random variable, Y.  With multiple samples from the interval  and 
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If  is strictly increasing and continuous, then , where , is a real number  such 
that .  To generate a random sample value for an input random variable, X, a random 
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Finally, multiple outer loop iterations lead to a collection of output variable distributions whose 
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4.  The sampling scheme 
may be based on multiple approaches, including random sampling or Latin hypercube sampling.  For 
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative 
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using its probability distribution via a Monte Carlo scheme.  The vector x (with several X1 sample 
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Finally, multiple outer loop iterations lead to a collection of output variable distributions whose 
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example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative 
distribution function  and X2 is represented as an interval .  Given a function g(x) as X1 + 
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations 
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values and the same X2 sample value) when passed through the function g(x) produces a probability 
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number, r, is first generated between 0 and 1 (there are several random sampling schemes available in 
the literature, including simple random sampling (where all samples have equal likelihood of being 
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement) 
(Abrahamsson, 2002)).  This sampled value, r, is then passed through the inverse cumulative 
distribution function  to generate a random sample value, . Similarly, random sample values 
for all k uncertain input variables may be generated resulting in a random sample vector, x.  The 
vector x when passed through the function g(x) produces a random output value of y.  This Monte 
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability 
distribution for the output random variable Y.

2. Interval Analysis:  This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals.  The approach is computationally inexpensive, 
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis.  Let us 
assume two uncertain input variables X1 and X2, represented as intervals  and  respectively.
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forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase” 
sampling approach.  This approach involves two computational sampling loops:  outer and inner.  The 
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains 
variables with stochastic uncertainty.  A single iteration in the outer loop yields a sample (from the 
outer loop variables) that is passed to the inner loop, where several iterations involving samples from 
the inner loop variables are performed.  Each sample combination of outer and inner loop variables 
when passed through a model results in a realization of the output variable of interest.  Thus, several 
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose 
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4.  The sampling scheme 
may be based on multiple approaches, including random sampling or Latin hypercube sampling.  For 
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative 
distribution function  and X2 is represented as an interval .  Given a function g(x) as X1 + 
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations 
from X1.  Given a sample from the interval , several samples (iterations) for X1 may be generated 
using its probability distribution via a Monte Carlo scheme.  The vector x (with several X1 sample 
values and the same X2 sample value) when passed through the function g(x) produces a probability 
distribution for the output random variable, Y.  With multiple samples from the interval  and 
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the 
dispersion of distributions reflects the knowledge-based uncertainty. 
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1. Monte Carlo Sampling Analysis:  Let us assume an input random variable, X that has a cumulative 
distribution function  and an inverse cumulative distribution function .
If  is strictly increasing and continuous, then , where , is a real number  such 
that .  To generate a random sample value for an input random variable, X, a random 
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in 
the literature, including simple random sampling (where all samples have equal likelihood of being 
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement) 
(Abrahamsson, 2002)).  This sampled value, r, is then passed through the inverse cumulative 
distribution function  to generate a random sample value, . Similarly, random sample values 
for all k uncertain input variables may be generated resulting in a random sample vector, x.  The 
vector x when passed through the function g(x) produces a random output value of y.  This Monte 
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability 
distribution for the output random variable Y.

2. Interval Analysis:  This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals.  The approach is computationally inexpensive, 
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis.  Let us 
assume two uncertain input variables X1 and X2, represented as intervals  and  respectively.
For basic arithmetic operations with: g(x) as X1 + X2, y = ; g(x) as X1 - X2, y = 

; g(x) as X1 X2, y = ; and g(x) as X1 X2,
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3. Two-phase Monte Carlo Sampling Analysis:  In certain applications, stochastic and knowledge-based 
forms of uncertainty in the input variables may be separated and analyzed further using a “two-phase” 
sampling approach.  This approach involves two computational sampling loops:  outer and inner.  The 
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains 
variables with stochastic uncertainty.  A single iteration in the outer loop yields a sample (from the 
outer loop variables) that is passed to the inner loop, where several iterations involving samples from 
the inner loop variables are performed.  Each sample combination of outer and inner loop variables 
when passed through a model results in a realization of the output variable of interest.  Thus, several 
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose 
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4.  The sampling scheme 
may be based on multiple approaches, including random sampling or Latin hypercube sampling.  For 
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative 
distribution function  and X2 is represented as an interval .  Given a function g(x) as X1 + 
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations 
from X1.  Given a sample from the interval , several samples (iterations) for X1 may be generated 
using its probability distribution via a Monte Carlo scheme.  The vector x (with several X1 sample 
values and the same X2 sample value) when passed through the function g(x) produces a probability 
distribution for the output random variable, Y.  With multiple samples from the interval  and 
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the 
dispersion of distributions reflects the knowledge-based uncertainty. 
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that .  To generate a random sample value for an input random variable, X, a random 
number, r, is first generated between 0 and 1 (there are several random sampling schemes available in 
the literature, including simple random sampling (where all samples have equal likelihood of being 
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement) 
(Abrahamsson, 2002)).  This sampled value, r, is then passed through the inverse cumulative 
distribution function  to generate a random sample value, . Similarly, random sample values 
for all k uncertain input variables may be generated resulting in a random sample vector, x.  The 
vector x when passed through the function g(x) produces a random output value of y.  This Monte 
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability 
distribution for the output random variable Y.

2. Interval Analysis:  This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals.  The approach is computationally inexpensive, 
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis.  Let us 
assume two uncertain input variables X1 and X2, represented as intervals  and  respectively.
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sampling approach.  This approach involves two computational sampling loops:  outer and inner.  The 
outer loop contains input variables with knowledge-based uncertainty and the inner loop contains 
variables with stochastic uncertainty.  A single iteration in the outer loop yields a sample (from the 
outer loop variables) that is passed to the inner loop, where several iterations involving samples from 
the inner loop variables are performed.  Each sample combination of outer and inner loop variables 
when passed through a model results in a realization of the output variable of interest.  Thus, several 
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose 
dispersion addresses knowledge-based uncertainty.

A graphical representation of this two-phase sampling analysis is in Figure 4.  The sampling scheme 
may be based on multiple approaches, including random sampling or Latin hypercube sampling.  For 
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative 
distribution function  and X2 is represented as an interval .  Given a function g(x) as X1 + 
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations 
from X1.  Given a sample from the interval , several samples (iterations) for X1 may be generated 
using its probability distribution via a Monte Carlo scheme.  The vector x (with several X1 sample 
values and the same X2 sample value) when passed through the function g(x) produces a probability 
distribution for the output random variable, Y.  With multiple samples from the interval  and 
repetition of the sampling process above, a collection of output probability distributions are obtained.
Each distribution for output random variable, Y, represents the stochastic uncertainty and the 
dispersion of distributions reflects the knowledge-based uncertainty. 
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number, r, is first generated between 0 and 1 (there are several random sampling schemes available in 
the literature, including simple random sampling (where all samples have equal likelihood of being 
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement) 
(Abrahamsson, 2002)).  This sampled value, r, is then passed through the inverse cumulative 
distribution function  to generate a random sample value, . Similarly, random sample values 
for all k uncertain input variables may be generated resulting in a random sample vector, x.  The 
vector x when passed through the function g(x) produces a random output value of y.  This Monte 
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability 
distribution for the output random variable Y.

2. Interval Analysis:  This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals.  The approach is computationally inexpensive, 
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis.  Let us 
assume two uncertain input variables X1 and X2, represented as intervals  and  respectively.
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variables with stochastic uncertainty.  A single iteration in the outer loop yields a sample (from the 
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the inner loop variables are performed.  Each sample combination of outer and inner loop variables 
when passed through a model results in a realization of the output variable of interest.  Thus, several 
inner loop iterations result in an output variable distribution addressing stochastic uncertainty.
Finally, multiple outer loop iterations lead to a collection of output variable distributions whose 
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may be based on multiple approaches, including random sampling or Latin hypercube sampling.  For 
example, let us assume two uncertain input variables X1 and X2, where X1 has a cumulative 
distribution function  and X2 is represented as an interval .  Given a function g(x) as X1 + 
X2, the outer loop may comprise of realizations from X2 and the inner loop may contain realizations 
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using its probability distribution via a Monte Carlo scheme.  The vector x (with several X1 sample 
values and the same X2 sample value) when passed through the function g(x) produces a probability 
distribution for the output random variable, Y.  With multiple samples from the interval  and 
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Each distribution for output random variable, Y, represents the stochastic uncertainty and the 
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number, r, is first generated between 0 and 1 (there are several random sampling schemes available in 
the literature, including simple random sampling (where all samples have equal likelihood of being 
chosen) and Latin hypercube sampling (a stratified sampling scheme without replacement) 
(Abrahamsson, 2002)).  This sampled value, r, is then passed through the inverse cumulative 
distribution function  to generate a random sample value, . Similarly, random sample values 
for all k uncertain input variables may be generated resulting in a random sample vector, x.  The 
vector x when passed through the function g(x) produces a random output value of y.  This Monte 
Carlo sampling process may be repeated hundreds or thousands of times to generate a probability 
distribution for the output random variable Y.

2. Interval Analysis:  This analysis allows the propagation of interval uncertainty to output variable, y
when input variables, x, are represented as intervals.  The approach is computationally inexpensive, 
produces conservative uncertainty estimates, and is useful for conducting worst-case analysis.  Let us 
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PROBABILISTIC FRAMEWORK FOR 
PAYOFF UNCERTAINTY QUANTIFICATION

The payoff uncertainty quantification framework 
presented here is an extension of the conceptual 
representation within prior work (Chatterjee et al., 
2015) and is based on systems analysis, probability 
theory, and utility theory. Within this framework, 
uncertainty is modeled through marginal, joint, and 
conditional probability distributions associated with 
parameters of a stochastic cybersecurity game (see 
Figure 5). There are five elements within this model-
ing framework: (1) probability of initial cyber system 
state, (2) probability of attacker type, (3) probability 
of player action choices, (4) probability of cyber 
system state transitions over time, and (5) probability 
of attacker payoff utility. An underlying assumption 
here is that the cyber system is already compromised; 
as a result issues related to sensing during an attack 
is beyond the scope of this study. The probabilistic 
intuition within this framework initiates with the 
cyber system initially being in a particular state of 
operation. Multiple types of attacks may be launched 
to degrade system performance from that initial state. 
Based on system state conditions and attacker types, 
various player action choices may then be available. As 
a result of these player actions, the cyber system may 
or may not transition to other states of operation. 
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Further, depending on the final state of operation, 
attacker payoff utilities may be assessed using prob-
ability distributions. This conditional probabilistic 
reasoning helps organize the dependencies among the 
system, attacker types, and player actions and enables 
the application of total probability theorem for payoff 
uncertainty propagation.

Mathematically, let 

Figure 5.  Payoff Uncertainty Quantification Framework (adapted from Chatterjee et al., 2015)  

Mathematically, let  be the probability of the system being in initial state , where  is a finite 
set of all possible system states.  Let  be the probability of attacker type  given initial system 
state .  Then ) is the probability of players taking actions , conditioned on the attacker type 
and the system state .  Let  be the transition probability from system state  to state  given 
action tuple  and attacker type .  Let us also assume that these conditional and marginal distributions 
are available from domain experts or simulation experiments; the next step involves propagating these 
uncertainties into the attacker payoff utility and computing its probability distribution.  The final outputs 
of interest are marginal and conditional probabilities of attacker payoff utility, .

Using total probability theorem, the discrete version of the marginal attacker payoff probability is: 

In this case, all the dependent variables in the conditional distributions get integrated out.  This quantity 
provides distributional information about overall attacker payoff utility, but does not reveal specific 
details such as the probability of attacker payoff utility with an assumed initial system state,  or against 
an assumed attacker type, .  To reveal these finer resolution details, we retain conditional probabilities, 
given specific quantities.  For example, , is the probability of attacker payoff assuming an 
initial system state and is computed as: 

Similarly, is the probability of attacker payoff given an assumed attacker type and initial 
system state and is computed as: 

Figure 6 presents notional attacker payoff marginal and conditional probability distributions.  In this 
figure, marginal probability P , represents the overall uncertainty in attacker payoff.  The 
conditional probability, , represents payoff uncertainty for an assumed initial system state.  
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity 
game settings and are important for identifying optimal defender strategies needed for resilient design of 
cyber systems. 
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each, or if play of the game continued on for an infinite number of rounds, then it would be 
classified as an infinite game.   

• It is a non-cooperative game since the players cannot speak to one another (and we assume they 
have not planned their choices before being accused of the crime) and since they cannot form a 
coalition against another party; if communication were allowed then such a game would be a 
cooperative game.   

• It is a static game, since each player gets one chance to confess before play is over; if the game 
had multiple stages, e.g. multiple crimes to confess to, then it would become dynamic.

• It is a simultaneous game, in essence, since neither player learns about the other’s decision before 
play is over; if, however, once the first player confessed, the second one was notified before 
acting, this would change the game to sequential.

• It is a general-sum game since the sum of the payoffs over the players for any action is non-zero; 
if for every play one player lost in value what the other gained (e.g. monetary settlements), then 
this would become a zero-sum game.   

• It is a game with imperfect information since there is no past; if, however, the players had been in 
this situation in the past for a different crime and the players’ past decisions influenced present 
choices, then this would become a game with perfect information. 

• It is a game with complete information since the players know each other’s payoffs; if the players 
played according to an uncertain utility function of each play’s payoff (e.g. one player gets paid 
to serve a longer sentence) which is further unknown to the opposing player, then we would have 
a game with incomplete information. 

• Finally, the game has symmetric payoffs since each player receives the same sentence in similar 
scenarios; if, for example, one player had a previous record and would receive more time in jail 
upon confessing, then the game would become an asymmetric game. 

To recap, we have the following high-level concepts categorized with some notation and key notes: 
• players ( , )

o two or more decision-makers play the game
o assume they act intelligently or rationally, i.e. never deviate from ‘best’ 

• actions (  for )
o player 's action is an element , possibly infinitely many 
o a play is a tuple  in the set 

• payoff functions (  for )
o each player  places a value  on each play 
o may not be reciprocal or zero-sum

• information ([in]complete, [im]perfect) 
o complete information means each player knows all others’ payoff values for each play 

(know value of each possible outcome) 
o perfect mean you know all previous plays (know history of plays and corresponding

outcomes) 
• play (sequential/simultaneous; static/dynamic) 

o simultaneous means no information on play before choosing one’s own 
o static means only one act per player

<B head> Game Implications for Cyber Systems 
In cybersecurity, we typically model a non-cooperative game in which players act and where system state 
transitions reflect changes in the network’s operational behavior.  To this end, we augment the game tuple 
to include the finite—albeit generally very large—system state set , and the transition function 

 taking a state  and a play , and transitioning it to the next state .  The , where S is a finite 
set of all possible system states. Let 
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of interest are marginal and conditional probabilities of attacker payoff utility, .

Using total probability theorem, the discrete version of the marginal attacker payoff probability is: 

In this case, all the dependent variables in the conditional distributions get integrated out.  This quantity 
provides distributional information about overall attacker payoff utility, but does not reveal specific 
details such as the probability of attacker payoff utility with an assumed initial system state,  or against 
an assumed attacker type, .  To reveal these finer resolution details, we retain conditional probabilities, 
given specific quantities.  For example, , is the probability of attacker payoff assuming an 
initial system state and is computed as: 

Similarly, is the probability of attacker payoff given an assumed attacker type and initial 
system state and is computed as: 

Figure 6 presents notional attacker payoff marginal and conditional probability distributions.  In this 
figure, marginal probability P , represents the overall uncertainty in attacker payoff.  The 
conditional probability, , represents payoff uncertainty for an assumed initial system state.  
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity 
game settings and are important for identifying optimal defender strategies needed for resilient design of 
cyber systems. 
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Using total probability theorem, the discrete version of the marginal attacker payoff probability is: 

In this case, all the dependent variables in the conditional distributions get integrated out.  This quantity 
provides distributional information about overall attacker payoff utility, but does not reveal specific 
details such as the probability of attacker payoff utility with an assumed initial system state,  or against 
an assumed attacker type, .  To reveal these finer resolution details, we retain conditional probabilities, 
given specific quantities.  For example, , is the probability of attacker payoff assuming an 
initial system state and is computed as: 

Similarly, is the probability of attacker payoff given an assumed attacker type and initial 
system state and is computed as: 

Figure 6 presents notional attacker payoff marginal and conditional probability distributions.  In this 
figure, marginal probability P , represents the overall uncertainty in attacker payoff.  The 
conditional probability, , represents payoff uncertainty for an assumed initial system state.  
Different versions of attacker payoff probability distributions are essential inputs within cybersecurity 
game settings and are important for identifying optimal defender strategies needed for resilient design of 
cyber systems. 
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of attacker payoff probability distributions are essen-
tial inputs within cybersecurity game settings and are 
important for identifying optimal defender strategies 
needed for resilient design of cyber systems. 

CONCLUSION

Application of game theory-based mathematical 
modeling approaches (involving strategic decision-
makers) for cybersecurity is a promising area of 
research inquiry. This paper contributes to the 
state-of-the-art by highlighting the importance of 
quantifying several sources and types of uncer-
tainty impacting cyber attacker payoffs within this 
problem space. These uncertainties arise due to 
randomness or lack of knowledge associated with 
cyber system operational behaviors, attacker types, 
and attack and defense actions over time. Different 
classes of stochastic game models are discussed 
and approaches for representing and propagating 
uncertainty are identified. A conditional probabi-
listic reasoning approach is adopted to organize 
the dependencies between a cyber system’s state, 
attacker type, player actions, and state transitions. 
A theoretical, probabilistic modeling framework for 
quantifying attacker payoff uncertainty is described 
and mathematical formulations of marginal and 
conditional probability distributions are presented. 
Implementation of our mathematical formulations in 
real-world systems may yield valuable payoff uncer-
tainty inputs to large-scale cybersecurity games. 

A detailed investigation of uncertainty quantification 
within cybersecurity games could lead to advances in 
proactive security resource allocation strategies for 
designing resilient cyber systems. A goal of this paper 
was also to increase awareness about this problem 
domain among practitioners and researchers, and 
encourage further advancements in this area. 
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Creating New Private-Public Partnerships in 
Cybersecurity

Chris Golden

INTRODUCTION

With the threats posed by malicious actors in cyber-
space growing and evolving at an increasing rate, 
individuals, companies, and governments have a 
duty to take actions to mitigate these threats to 
our interconnected systems. The vulnerabilities are 
enormous, with almost all critical infrastructures in 
America and the communications nodes that connect 
them accessible via the Internet. The U.S. government 
is potentially not the primary target, but rather the 
critical infrastructure owned and operated by private 
companies which comprises over 70% (Treasury, 2013) 

of the nation’s critical infrastructure. Threat actors 
in cyberspace are targeting both private and public 
networks simultaneously. This is due to the fact that 
both business traffic and government traffic flow over 
the same commercially owned networks. Additionally, 
with government procurement buying many of the 
same systems, software, and other information tech-
nology appliances, the threat actors have no need to 
invest in breaking into two separate types of computer 
systems (Iasiello, 2012). Therefore, any response to 
critical infrastructure cybersecurity demands a coher-
ent, disciplined and nation-wide effort. 

Private companies do not have the resources or man-
power to tackle this issue alone. The United States 
government must be willing and able to step in and 
provide assistance (Consortium, 2011). To date, efforts 
to form private-public partnership in the cybersecu-
rity arena have made only modest gains. This is due 
to the basic variances in private and public sector 
interests. Private companies are driven by profit and 
look at cybersecurity costs in terms of the impact 
to the bottom line. Governments look at the poten-
tial consequences (Bures, 2013) of a lack of robust 
cybersecurity and want systems secured with much 
less concern for costs. These diverse interests are at the 
heart of current disagreements (Boardman & Vining, 
2012) in private-public partnerships in cybersecurity. 
Governments want the private sector to pay for their 
own cybersecurity to a level that the government feels 
will successfully secure our critical infrastructure. 
They would also like for companies to report private 
information about the company’s current security 
practices, network designs, and other data on potential 
or actual breaches of those systems. Not surprisingly, 
the private sector has little interest in either paying 
more for cybersecurity than they feel is necessary nor 
providing proprietary information to the government 
(Bures, 2013). They fear much of the proprietary 
information they report to the government will end up 

ABSTRACT

Current efforts to produce partnerships between 
the public and private sectors in cybersecurity 
have met with little success. This is due to the 
fundamental mismatch between the interests of 
public and private sector actors. Better aligning 
these interests will help create an environment 
which fosters cooperation between the private 
and public arenas. In addition, changing the 
structure of government support to the busi-
ness world might create a larger incentive for 
businesses to join a cybersecurity partnership. 
The combination of these two approaches, align-
ing interests and restructuring financial support 
could lead to a self-sustaining partnership where 
the interests of all parties are met while at the 
same time growing cybersecurity costs are 
controlled. 
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in the hands of their competitors (Treasury, 2013). If  
not divulged in a government report, many companies 
fear this information would become accessible via a 
Freedom of Information Act request by their com-
petitors. Many businesses view the current construct 
of private-public partnerships in cybersecurity as a 
one-way street. They fulfill their regulatory reporting 
requirements and yet no actionable information flows 
back to them from the government (Busch & Givens, 
2013). The government highlights the sensitivity and 
classification (Treasury, 2013) of this information as 
to why there is little to no information flowing back to 
companies. 

Any private-public partnership in cybersecurity 
must first address the differences in interests among 
all of the participants (Bures, 2013). A government 
assessment of the partnership will not sufficiently 
incentivize the private sector to join as principal par-
ticipants in the process. Changes in both the structure 
of the partnership and in the incentives provided to 
those who the government wishes to participate must 
be successfully addressed for there to be real partner-
ship development.

SEPARATE INTERESTS

Understanding the differences in interests between 
the government on the one side and the private sector 
on the other when it comes to cybersecurity partner-
ships is the critical first step. Without addressing all 
of the participants’ interests, there is little room to 
forge a new and better way forward for private-public 
partnerships in cybersecurity. Currently, there are very 
few similarities between these two groups of interests. 
Identifying the distinct differences in participants’ 
interests is the first step toward creating a new model 
for cybersecurity partnerships. 

Many of these differences originate from the two very 
distinct operating models the business and govern-
ment communities utilize. The private sector focuses 
on profit-making and impacts to the bottom-line 
of their financial viability. They view costs, such as 
those necessary for a high level of cybersecurity, as 
something to be minimized. The higher costs of cyber-
security, especially to the level of cybersecurity their 
partners in the government would like them to achieve 
(Consortium, 2011), must come from somewhere and 

it is the business’s profit margin that takes the reduc-
tion. With the rise of litigation based on cybersecurity 
breaches (e.g. Sony, Target, etc.) and government 
approval of class action lawsuits, the tone emanating 
out of the C-suite in companies is slowly changing. To 
date, not enough change in these companies’ operating 
models have occurred to justify a decrease in govern-
ment interest in critical infrastructure cybersecurity. 

The manner in which the business community 
addresses risk is also quite different from how the 
government addresses it. Risk is inherent in all 
business activities and therefore, experienced busi-
ness professionals have learned to manage risk in 
multiple ways. These professionals have spent their 
entire business careers addressing and mitigating 
risks based on the risk’s economic impact to the 
business. Mitigating risks in a resource constrained 
environment that will allow the business to remain 
afloat during a crisis and quickly recover their ability 
to generate revenue is at the heart of business risk 
mitigation strategies. If the perceived cost to the 
business of a cybersecurity protocol is more than the 
perceived cost of potential data loss or a breach of 
the company’s networks, then many business profes-
sionals would opt to accept the risk versus expending 
funds for tighter cybersecurity. They are also 
conditioned to seek a return on investment for every 
dollar spent. Currently, there is little data to show 
the actual financial impact of cybersecurity strate-
gies in real dollars for companies (Consortium, 2011). 
Presently, there are very few examples of real costs 
from potential breaches or data loss to compare to 
the up-front investment required to implement cyber-
security postures which might prevent these events 
from taking place. This leads many business profes-
sionals to accept their current level of risk since they 
cannot determine the right mix of cyber defenses.

The United States government, on the other hand, 
views security and risks under a completely different 
rubric. One of the primary duties of the govern-
ment is to provide security for the population. It does 
this with much less regard for costs than within the 
corporate world. Obviously, the amount of resources 
available to the U.S. government for security is orders 
of magnitude more than the resources available to 
the private sector (Bissell, 2013). The U.S. govern-
ment views the providing of security as one of the 
core functions driving its very existence. Threats 
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are assigned strategies and these strategies are then 
resourced accordingly and tracked to establish the suc-
cess of failure of the strategy. It is little surprise that 
the government would apply the same basic principles 
to critical infrastructure cybersecurity. Therefore, the 
government expects private sector companies who 
own and operate our critical infrastructure to fully 
support not only the government’s programs but also 
the government’s views.

INTERESTS ALIGNMENT AND 
RECOMMENDATION

Any future private-public partnerships in cybersecu-
rity will need to adequately address both the interests 
of the U.S. government as well as the interests of 
the private sector to be successful. In the case today, 
too much focus is on the government’s requirements 
and too little on the desires of the private sector. 
Therefore, there have been few notable achievements 
in these private-public partnerships. New programs 
will need to address all of the following interests:

 � Private sector desires for:

 � Privacy or internal or proprietary information

 � Lower costs

 � Lower regulatory requirements

 � Other tools to assist in the 
management of cyber risks

 � Governmental desires for:

 � Secure privately owned and 
operated critical infrastructure

 � Information from businesses on their 
cybersecurity programs and their results

 � Private sector participation in 
government cybersecurity programs

There is an example for a structure that would 
address a number of the interests above. It has not 
been applied to cybersecurity before but the legal 
and functional framework is already in place. The 
United States Air Force convenes two separate boards 
in event of an aircraft accident. One is an Accident 
Investigation Board (AIB) and the other is a Safety 
Investigation Board (SIB) (USAF, 2013). Typically, 

the SIB convenes first and is completely focused on 
identifying the root cause of the accident in order to 
make any immediate changes to Air Force policies or 
guidance which might have led to the accident. This 
is done to ensure that the weapon systems involved 
are brought back up to full readiness as quickly as 
possible. The information gathered by the SIB is not 
releasable to the public, nor is it obtainable through 
a Freedom of Information Act request. It is sim-
ply designed to identify the cause of an accident as 
quickly as possible to ensure a repeat accident does 
not occur. The Accident Investigation Board (AIB), 
on the other hand, conducts their investigation with 
some portions of the SIB’s report but continues its 
legal process to assign blame. The AIB’s reports are 
made public at the conclusion of the board’s investiga-
tion. This dual structure could be easily adopted for 
cybersecurity. 

Many companies desire not to release private, internal 
information on their network designs, known vulner-
abilities, and potential or actual breaches due to the 
fact that much of this information would eventually 
be made available to the public, and hence to their 
business competition. In the event of a potential or 
actual breach of corporate networks, a system similar 
to the SIB should be activated. The intent of the 
Cybersecurity Investigation Board (CIB) would be to 
determine the five W’s of the event. Who conducted 
the breach? Where did the breach occur? When did it 
occur? What did the perpetrators do while inside the 
company’s networks? Why did this event occur? The 
CIB would collect this data so that they could quickly 
share the relevant aspects of the event with the rest of 
our critical infrastructure owners while keeping the 
affected company’s proprietary information private. 
Either refusing to release the report or sanitizing the 
report to ensure that other companies would not be 
able to piece together any proprietary information and 
identify the affected company would be a core aspect 
of this reporting regime. 

There would be a need for legislation enacted by the 
government to protect this type of communication 
and the identity of the company who provided it. The 
protected communication system described above 
coupled with the new legal guarantees should address 
private sector interests on issues of privacy as well as 
governmental interests in obtaining information about 
potential or actual breaches quickly and efficiently. 
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This type of incentive would cost very little, yet 
help eliminate the fears of many companies in their 
decision to cooperate with the U.S. government on 
cybersecurity. 

Another incentive which might bring more of the 
private sector to the table of critical infrastructure 
cybersecurity involves lowering the overall costs asso-
ciated with their cybersecurity programs. 

With costs identified as the number one issue busi-
nesses contend with regarding their cybersecurity 
posture (Consortium, 2011), some form of govern-
ment subsidy would be required to assist in bringing 
in partners from the business community. What is 
the best structure for the government to provide a 
subsidy to those who own and operate our nation’s 
critical infrastructure? With current projections of 
decreasing federal and local governmental budgets 
there should be no expectation that any government 
will have the resources available to provide high 
levels of funding directed toward cybersecurity; no 
blank checks in any future cybersecurity partner-
ships. Yet, with cost as the primary hindrance to 
effective cybersecurity practices, some amount of 
funding will need to be made available to these 
owner/operators. By addressing the private sector’s 
cost interest while simultaneously addressing the 
government’s participation interest there might be a 
combining of these interests to find a solution. 

The U.S. government should create a cybersecurity 
partnership regime that rewards industry for basic 
computer network security. This level of cybersecurity 
is commonly referred to as computer system hygiene. 
The government should hold businesses account-
able for basic security postures like the changing 
of passwords, patching of operating systems and 
software applications to remove known vulnerabili-
ties, and the monitoring of their internal systems for 
potential breaches (Clinton, 2011). The government 
should also expect companies to pay for these security 
steps as they are inherently in the best interests of the 
company to do so. In exchange, once a business has 
proven they have met the basic standard for cyberse-
curity, each business would now be allowed to join the 
private-public partnership, or consortium, for cyberse-
curity. Becoming a member of the consortium would 
then open up a wide range of benefits to the company 
including better access to government information, 
highly subsidized or free of charge access to research, 

development in the cybersecurity field, and access to 
expert on-site or remote assistance from government 
employees or agencies. Most importantly, participa-
tion in this private-public partnership would ensure 
the company’s reports and other private network 
information would be handled via the secure com-
munications channel established by Congress in the 
Cybersecurity Investigation Board process. 

The combination of new structure (Cybersecurity 
Investigation Board) and new financial incentives for 
bringing a company’s systems up to a standard level 
of cybersecurity defense should address all of the 
interests of the business community while they debate 
the merits of joining the private-public partnership 
(Bissell, 2013). Higher participation from the private 
sector and more information flowing on cyber-defen-
sive strategies and capabilities would address most of 
the government’s interests as well (Germano, 2014). 
By successfully addressing each of the participants’ 
interests – both private and public – an increase in not 
only the potential for a higher level of participation in 
this private-public partnership for cybersecurity, but 
also an increase in the chances for success in cyberse-
curity for our critical infrastructure could be realized.

CONCLUSION

The threats posed in cyberspace by organized crime, 
state and non-state actors, and hacktivists among 
others must be successfully mitigated for the United 
States to remain safe and secure. All of these cyber 
threats can be directed against our privately and 
publically owned and operated critical infrastructure 
to the advantage of our adversaries. Historically, the 
business community regarded cooperation with the 
U.S. government as an obstacle to business efficiency 
and something to be entered into slowly, if  at all. 
Far too many of the business’ interests were not 
addressed in current private-public partnerships for 
cybersecurity. The government will need to adapt 
current partnership models to better address the 
business community’s concerns or face a decision to 
either mandate compliance via legislation or abandon 
the quest for cybersecurity partnerships entirely. 
The future of private-public partnerships does not 
have to produce such a low return on investments. 
Molding new partnership models after existing, 
successful models in other fields can address many 
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of the interests which remain unanswered today. 
Changing the structure of government sponsorship 
and funding of these programs may also help 
generate the level of participation which could 
lead private-public partnerships in cybersecurity 
to become self-sustaining. Companies will need to 
see more advantages to joining a partnership than 
they see disadvantages. They need to see not only 
cost savings but also a return on the cybersecurity 
investment. Achieving a government standard for their 
cybersecurity posture will not only get the company 
to a point where they can protect themselves, but also 
open up a whole other set of positive opportunities 
which, in the long run, will lessen their financial 
burden for their cybersecurity programs. 
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Evolution of Information Security Issues in 
Small Businesses 
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ABSTRACT

Small businesses often display a lack of concern 
towards cyber crime and information security 
problems. This lack of concern usually results 
in delayed or incorrectly implemented security 
measures, which increases vulnerability to cyber 
crime. This paper presents an empirical study 
of 122 small business owners from the state of 
Hawaii with regards to their information security. 
These results are compared with earlier studies 
conducted in 2000 and 2003. The results of this 
study showed a significant evolution of informa-
tion security issues within small businesses. 
This research suggests that small business 
leaders need to demonstrate leadership, tech-
nical knowledge, and actions to broaden their 
preparation against a range of information secu-
rity issues and problems. The findings may be 
applicable to small business leaders who pro-
actively search for a cost-effective and optimal 
combination of leadership styles, technologies, 
and policies that mitigate the evolving threats of 
cyber crime and information security problems. 

INTRODUCTION

Globalization and increased reliance on the Internet 
has forced many organizations to rely on computer 
and networking technology for the storage of valu-
able company and personal information (Easttom, 
2006). Many small businesses have embraced Internet 
technologies to reach out to their customers, partners, 
and employees from around the world (Day, 2003). 
Proliferation of online activity and e-commerce has 
attracted the attention of existing criminal organiza-
tions and a new breed of cyber criminals (Gupta and 
Hammond, 2005). 

Cyber criminals engage in online attacks that exploit 
vulnerabilities and deficiencies within the cyber 
defenses of organizations (Szor, 2005). Because of 
size, resource, and skill constraints, small businesses 
are often ill-prepared to combat the emerging threats 
of cyber crime (Ryan, 2000). Small business owners 
and key employees with effective leadership styles 
can help prioritize actions needed to combat cyber-
crime and mitigate information security concerns 
(Northouse, 2004). Conversely, ineffective leadership 
styles can lead to passive or reactive measures against 
cyber crime, which can lead to business damages and 
losses (Gupta and Hammond, 2005). Phishing, a 
deceptive strategy to gain personal information the 
target might not otherwise divulge, is an increasingly 
common form of computer attack (Easttom, 2006).

Current research indicates that the information 
systems of small businesses in the United States are 
vulnerable to cyber crime (Adamkiewicz, 2005; Baker 
and Wallace, 2007; O’Rourke, 2003). The problem 
is small businesses often display a lack of concern 
towards information security problems (Gupta and 
Hammond, 2005). This lack of concern usually 
results in delayed or incorrectly implemented security 
measures, which increases vulnerability to cyber crime 
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(Andress, 2003; DeZulueta, 2004). While it may 
appear that a passive and reactionary approach to 
computer security threats is economically optimal 
and cost-effective for many small businesses, the 
consequences of an actual cyber crime may be poten-
tially damaging to the business.

This study examined the problem by determining 
whether and to what degree any relationship exists 
between leadership styles and the level of concern for 
information security problems. The general popula-
tion for the study included small businesses located 
in the state of Hawaii. The results of this study pro-
vides small business leaders with information useful 
in assessing their level of concern and determining 
which leadership styles are the most effective in miti-
gating information security problems. 

SECURITY ISSUES WITHIN 
SMALL BUSINESSES

Cyber crime is not only relevant to large corporations, 
but to the millions of small businesses in the United 
States (Gupta and Hammond, 2005). According to 
the U.S. Small Business Administration and the Small 
Business Act, a small business is an independently 
owned entity and not dominant in its field of opera-
tion (SBA, 2015). The U.S. Small Business Act also 
states that the definition of a small business varies by 
industry. The Office of Advocacy of the U.S. SBA, 
defines a small business as a business having 500 or 
fewer employees. This study used U.S. SBA definitions 
and classifications.

Small businesses play a significant role in the U.S. 
economy. According to the U.S. SBA’s Office of 
Advocacy, the U.S. had 17,000 large businesses 
and approximately 25 million small businesses in 
2005. Small businesses generated 2.4 times more 
innovations than large businesses (Easttom, 2006). 
According to the U.S. SBA, small businesses employ 
half of all private sector employees and pay half of 
the total U.S. private payroll. 

Small businesses in the U.S. have generated between 
60% and 80% of net new jobs annually over the last 
decade and created more than 50% of non-farm pri-
vate gross domestic product (SBA, 2015). Economic 
figures indicate the importance of small businesses 

to the U.S. economy and the potential for negative 
economic impacts from cybercrime (CSI/FBI, 2015). 
A coordinated cyber threat against small businesses 
might readily impact a significant section of the U.S. 
economy (Symantec, 2015). Because small businesses 
are so important to the U.S. economy, preparation 
against the evolving threat of cyber crime is important 
(CSI/FBI, 2015).

In regard to their preparations against cyber crime, 
small businesses can be divided into three categories. 
According to the report on the state of small business 
security (State of small business security, 2006), one 
category consists of “mom and pop” businesses whose 
business computers also serve as the owners’ home 
computers. Small businesses in the “mom and pop” 
category have basic anti-virus and security software 
in place and rarely rely on skilled professionals for 
security assistance. The report on the state of small 
business security also described a second category of 
small companies with a few hundred employees and a 
dedicated information technology (IT) staff  (CSI/FBI, 
2015). According to the U.S. CSI/FBI study (2015) 
small businesses with a few hundred employees rely on 
the knowledge and expertise of their key IT personnel 
for cyber security. 

The third and final category included small businesses 
that outsource most of their security requirements to 
third-party vendors (State of small business security, 
2006). According to the report on the state of small 
business security, vendors provide the level of security 
needed to prevent cyber crime and enable recovery 
from security breaches. Small businesses that out-
source information security depend upon on the 
outside vendor’s training and reliability for their 
security needs (CSI/FBI, 2015). According to the U.S. 
CSI/FBI study (2015) reliance on an external vendor 
introduces risks as well as benefits in that it removes 
the need for a small business to train and retain skilled 
IT employees to combat cyber crime. 

The existing literature on cybercrime and cyber secu-
rity focuses on the needs of large organizations that 
have thousands of employees, complex security needs, 
and large computer systems (Adamkiewicz, 2005). The 
literature on leadership styles and information security 
concerns within small businesses is very limited. The 
literature gap may be due to the evolution of cyber 
crime, which initially targeted the computer systems 
of large corporations and government organizations. 
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As the cybersecurity efforts of large organizations 
and the government have expanded and improved, the 
trends of cyber crime have shifted to vulnerable tar-
gets like small businesses (Wall, 2005). According to 
the Symantec Threat Report (Symantec, 2015), cyber 
criminals increasingly focused on identity theft and 
fraud for motives of financial gain. The shift in the 
orientation of cyber criminals over the past few years 
may help to explain the present literature gap regard-
ing the impact of cyber crime on small businesses. 

STUDY DESIGN

This research study used a quantitative, descrip-
tive, and correlational methodology to investigate a 
possible relationship between the particular leader-
ship styles of small business owners (independent 
variables) and the level of concern for information 
security problems (dependent variables) within small 
businesses in Hawaii. The study defined a “small busi-
ness” as one with 500 or fewer employees, according 
to the United States Small Business Administration 
(SBA, 2015). This study utilized the Multifactor 
Leadership Questionnaire (MLQ) instrument (Bass 
and Avolio, 2004), to assess each company’s leadership 
style (independent variable) and the Small Business 
Security Survey instrument (Ryan, 2000) to determine 
the level of concern for information security problems 
within each small business (dependent variable). 

For the first part of the research, a pilot study was 
conducted with 10 small businesses that are mem-
bers of the various chambers of commerce and trade 
associations within Hawaii. The pilot study partici-
pants, randomly selected from the study population, 
were small business owners who fulfilled the eligibility 

criteria of the study population. The randomly 
selected 10 businesses represented different indus-
tries, and had different numbers of employees. Five 
businesses belonged to the Chamber of Commerce 
of Hawaii (CoCHawaii, 2015) and five businesses 
belonged to the Small Business Hawaii (SBH, 2015) 
trade association. 

The second part of the current research involved 
an online survey of 800 small businesses that, as 
mentioned previously, are members of the various 
chambers of commerce and trade associations within 
Hawaii. Businesses that belong to more than one 
organization were included only once in the study 
population in order to avoid duplication. The online 
survey used two previously validated, reliable, and 
broadly used research survey instruments (Bass and 
Avolio, 2004; Ryan 2000). 

The third part of this study involved triangulation 
and the random selection of 10 small businesses from 
the list of valid respondents to the online survey. 
Interviews were conducted with 10 businesses to help 
triangulate the results of the online survey and to 
confirm or dispute the findings. Triangulation helped 
reduce the chances for systematic error because the 
method provided a strategy for obtaining the same 
information through different methods (Rubin and 
Babbie, 2005).

Study Variables

The study contained 14 dependent variables. As shown 
in Table 1, each variable represented a specific informa-
tion security problem that a small business may face 
(Ryan, 2000). Using a Likert scale, the study examined 
the level of concern for each security problem.

TABLE 1: 14 DEPENDENT VARIABLES

TABLE 1 CONTINUED ON NEXT PAGE

INFORMATION SECURITY PROBLEM Examples of problems in small businesses.

INSIDER ACCESS ABUSE Unauthorized login by employees.

VIRUSES Programs that enter through attachments in email.

POWER FAILURE Loss of data due to abrupt shutdown of computers.

SOFTWARE PROBLEMS Vulnerable software due to absence of patches.
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The three independent variables, as shown in Table 2, 
were the transformational, transactional, and passive-
avoidant leadership styles as defined by Bass and 
Avolio (2004). The study hypothesized that effective 
leadership styles (the independent variables, listed in 
Table 2) would foster concern for information security 
problems (the dependent variables, listed in Table 1) 
within small businesses.

LEADERSHIP STYLES
Examples in  
small businesses

TRANSFORMATIONAL Visionary, dynamic owner

TRANSACTIONAL
Leader focused on 
costs/benefits

PASSIVE-AVOIDANT
Absentee, 
unavailable leader

The research was statistically controlled by five 
intervening variables derived from the Small Business 
Security Survey (Ryan, 2000), as shown in Table 3.

VARIABLE NAME
Examples in  
small businesses

BUSINESS AREA Industry, as in Agriculture

# EMPLOYEES Ranges from 1 to 500

ANNUAL REVENUE
$500,000 to more than $5 
million

# COMPUTERS
Five to more than 100 
computers

CONNECTIVITY
Internet, Intranet, 
E-Commerce etc.

DATA INTEGRITY Corruption of customer list or sales data

TRANSACTION INTEGRITY Corruption of financial transaction with bank

OUTSIDER ACCESS ABUSE Programs that enter through attachments in email

DATA SECRECY Confidentiality of payroll information

DATA AVAILABILITY Availability of access to time sheet data

DATA THEFT Theft of confidential employee information

DATA SABOTAGE Intentional destruction of financial data

USER ERRORS Accidental erasure of data by untrained user

NATURAL DISASTER Damage to computer systems from floods

FRAUD Impersonation and deceit used to elicit information

TABLE 1: 14 DEPENDENT VARIABLES (CONTINUED)

TABLE 2: THREE INDEPENDENT VARIABLES

TABLE 3: FIVE INTERVENING VARIABLES
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Hypothesis

The research study employed three statistical hypoth-
eses to measure the relationship(s) among three 
independent variables (three leadership styles) and 
14 dependent variables (information security prob-
lems). The H0 represented the null hypothesis and Ha 
the alternative hypothesis. The following hypotheses 
were tested, based on a quantitative research method-
ology, to answer the research questions.

HYPOTHESIS 1

 � H10   There is no relationship between the 
transformational leadership style score 
and the level of concern for information 
security problems within small businesses.

 � H1a   There is a relationship between the 
transformational leadership style score 
and the level of concern for information 
security problems within small businesses.

HYPOTHESIS 2

 � H20   There is no relationship between the 
transactional leadership style score and the 
level of concern for information security 
problems within small businesses.

 � H2a   There is a relationship between the 
transactional leadership style score and the 
level of concern for information security 
problems within small businesses.

HYPOTHESIS 3

 � H30   There is no relationship between the 
passive-avoidant leadership style score 
and the level of concern for information 
security problems within small businesses.

 � H3a   There is a relationship between the passive-
avoidant leadership style score and the 
level of concern for information security 
problems within small businesses.

Study Results

The study results covered various aspects of infor-
mation security relevant to small businesses. Table 4 
displays the various employees and users who are 
allowed access to computers and networks within 
small businesses. The top two groups are full-time and 
part-time employees, but other user groups like family 
members and customers may also obtain gain access 
to computers and networks within small businesses.

N = 122

ALL FULL-TIME EMPLOYEES 88

PART-TIME EMPLOYEES 47

TEMPORARY EMPLOYEES 26

SOME EMPLOYEES, JOB RELATED 25

CONTRACTORS 22

FAMILY MEMBERS, FRIENDS 19

CUSTOMERS 15

E-COMMERCE PARTNERS 6

TABLE 4: ACCESS TO COMPUTERS AND NETWORKS
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Table 5 below displays the information security poli-
cies and procedures within small businesses. The top 
four items include data recovery procedures, informa-
tion security policies, information security procedures, 
and computer use and misuse policies. 

N = 122

DATA RECOVERY PROCEDURES 61

INFORMATION SECURITY POLICY 60

INFORMATION SECURITY PROCEDURES 56

COMPUTER USE AND MISUSE POLICY 54

PROPRIETARY DATA USE and 
MISUSE POLICY

47

COMMUNICATIONS USE and 
MISUSE POLICY

39

DATA DESTRUCTION PROCEDURES 33

COMPUTER EMERGENCY RESPONSE PLAN 32

BUSINESS CONTINUITY POLICY 25

COMPUTER EMERGENCY RESPONSE TEAM 22

MEDIA DESTRUCTION PROCEDURES 21

INFORMATION SENSITIVITY CODING 14

Table 6 below displays the technologies used by the 
survey respondents to prevent, detect, and resolve 
information security problems. The top three tech-
nologies are anti-virus software, firewalls, and power 
surge protectors. The bottom of the list includes 
security evaluation systems, media degaussers, and 
dial-back modems.

N = 122

ANTI-VIRUS SOFTWARE 117

FIREWALLS 110

POWER SURGE PROTECTORS 103

DATA BACKUP SYSTEMS 87

SHREDDERS 84

ENCRYPTION 51

SYSTEM ACCESS CONTROL 48

INTRUSION DETECTION 46

FACILITY ACCESS CONTROL 32

REDUNDANT SYSTEMS 31

DATA SEGMENTATION 26

SYSTEM ACTIVITY MONITOR 25

SECURITY EVALUATION SYSTEMS 17

MEDIA DEGAUSSERS 7

DIAL-BACK MODEM 3

TABLE 5: INFOSEC POLICIES AND PROCEDURES

TABLE 6: INFORMATION SECURITY TECHNOLOGIES
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Table 7 below displays the importance of several types 
of data to the respondents of the survey, recorded 
on an interval scale from 0 (not important) to 5 
(extremely important). Customer and privacy data 
ranked among the top two items in the list, while com-
petitive and market data ranked among the bottom 
two items in the list. The responses for the importance 
of customer, privacy, and proprietary data were highly 
negatively skewed (skewness coefficient < -1.96) indi-
cating the high importance placed by the respondents 
on these aspects of information security. 

N = 122 MEAN MEDIAN SD SKEW

CUSTOMER DATA 4.25 5.00 1.08 -1.53

PRIVACY DATA 4.13 5.00 1.15 -1.22

PROPRIETARY 
INFO

3.83 4.00 1.32 -0.74

TRADE SECRETS 3.43 4.00 1.53 -0.36

COMPETITIVE 
DATA

3.33 3.00 1.38 -0.26

MARKET DATA 3.30 3.00 1.28 -0.26

Table 8 displays the information security issues and 
problems experienced by the survey respondents 
within the calendar year 2007. Based on the results, 
data corruption and problems with virus and mali-
cious software (or malware) topped the list of negative 
experiences. Abuse of Internet access privileges by 
employees and problems with reliability in informa-
tion systems also placed within the top five concerns 
of survey respondents. Seven respondents reported 
problems with intrusion to computer systems by 
outsiders. Seven reported abuse from insiders of infor-
mation access privileges. 

N = 122 SKEW

DATA CORRUPTED OR PARTIALLY LOST 24

PROBLEMS WITH VIRUS or 
MALICIOUS SOFTWARE

22

EMPLOYEES ABUSED 
INTERNET ACCESS PRIVILEGES

15

PROBLEMS WITH RELIABILITY OF 
INFORMATION SYSTEMS

15

EXPERIENCED INFORMATION 
SECURITY INCIDENT

8

OUTSIDER BREAK IN TO 
INFORMATION SYSTEM

7

INSIDER ABUSED INFORMATION 
ACCESS PRIVILEGES

7

VICTIM OF FRAUD 5

LOST MONEY DUE TO 
INFORMATION SECURITY PROBLEM

4

VICTIM OF A NATURAL DISASTERS 4

COMPUTER EQUIPMENT STOLEN 4

PROPRIETARY DATA STOLEN 3

SECRET INFORMATION DIVULGED 3

TABLE 7: DATA IMPORTANCE

TABLE 8: INFOSEC EXPERIENCES
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Key Findings on Leadership and Security

The theoretical framework of this research study 
was based on the full range leadership model of 
Bass and Avolio (2004). The study used the MLQ 
instrument that includes a Likert scale to measure 
three specific leadership styles (defined here as 
independent variables) of small business owners. The 
MLQ instrument assesses three leadership styles by 
investigating nine behavioral factors. Through exten-
sive factor analysis in 2003, Bass and Avolio have 
identified the five behavioral factors of the trans-
formational leadership style as follows: idealized 
attributes (IA), idealized behaviors (IB), inspira-
tional motivation (IM), intellectual stimulation (IS), 
and individualized consideration (IC). 

Through confirmatory factor analysis, Bass and 
Avolio have also identified two behavioral fac-
tors of transactional leadership style: contingent 
reward (CR) and management-by-exception 
(active) (MBEA). Finally, their factor analysis 
determined the two behavioral factors of laissez-
faire or passive-avoidant leadership style: passive 
management-by-exception (passive) (MBEP) and 
laissez-faire (LF). 

The findings indicated that transactional leadership 
style is significantly related to 11 out of 14 informa-
tion security problems. This implies that the higher 
the level of transactional leadership style score, the 
higher the level of concern for 11 information secu-
rity problems.

The transactional leadership factor of Management 
by Exception Active (MBEA) is significantly related 
to 10 out of 14 information security problems. This 
implies that the higher the practice of active manage-
ment by exception, the higher the level of concern for 
10 information security problems.

Seven out of 14 information security problems were 
related to more than one leadership factor. 

Using stepwise multiple regression analysis, the 
transformational factor of Idealized Influence 
Attributes (IIA) and the transactional factor 
Management by Exception (MBEA) were the best 
predictors for the seven information security prob-
lems. This implies a combination of transformation 
and transactional leadership styles to prepare against 
seven common security problems.

The findings also indicated that transformational 
leadership style was significantly related to the level 
of concern for two information security problems, 
and passive-avoidance leadership was related to 
a single information security problem. Using the 
Pearson product-moment correlation, there is a 
statistically significant (p <= 0.05), positive correla-
tion between transformational leadership style score 
and the level of concern for two (out of 14) informa-
tion security problems. These two problems are data 
secrecy and data availability. Thus, the null hypoth-
esis H10 is rejected.

Likewise, there is a statistically significant 
(p <= 0.05), positive correlation between transac-
tional leadership style score and the level of concern 
for 11 (out of 14) information security problems. 
Therefore, the null hypothesis H20 is strongly 
rejected. 

Finally, there is a positive correlation between 
passive-avoidance leadership style score and the level 
of concern for one (out of 14) information security 
problems, power failure. While the null hypothesis 
H30 is rejected, it is not as strongly rejected as H10 
and H20.

EVOLUTION OF SECURITY 
ISSUES AND CONCERNS

The study results of 2008 (N=122) were compared to 
similar studies, using the same survey, conducted by 
Ryan (2000) and Gupta (2003). The study by Ryan 
covered small businesses in the United States with 
particular focus on businesses located in the state 
of Maryland. 209 responses were collected from 
the study by Ryan (N=209). Gupta focused on the 
Chamber of Commerce in the South Eastern United 
States and collected responses from 138 small busi-
ness (N=138). Table 9 describes the changes in access 
to computers and networks over the years for small 
businesses, with sharp growth in usage over the years 
for all employees, contractors and family members.
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2000 2003 2008

ALL FULL-TIME 
EMPLOYEES

57.4% 49.3% 72.1%

PART-TIME EMPLOYEES 17.2% 18.8% 38.5%

TEMPORARY EMPLOYEES 21.3% 8.7% 21.3%

SOME EMPLOYEES,  
JOB RELATED

31.6% 49.3% 20.5%

CONTRACTORS 6.7% 3.6% 18%

FAMILY MEMBERS, 
FRIENDS

24.4% 2.2% 15.6%

CUSTOMERS 6.2% 6.5% 12.3%

E-COMMERCE 
PARTNERS

1.9% 0.7% 4.9%

Table 10 displays the changes in information security 
policies and procedures within small businesses. 
The results suggest an increase in policies and 
procedures in most categories, especially in the areas 
of information security policy and procedures, and 
computer misuse and data destruction.

2000 2003 2008

DATA RECOVERY 
PROCEDURES

39.7% 47.1% 50%

INFORMATION 
SECURITY POLICY

30.6% 40.6% 49.2%

INFORMATION 
SECURITY PROCEDURES

23% 32.6% 45.9%

COMPUTER USE POLICY 24.9% 42.8% 44.3%

PROPRIETARY DATA 
USE POLICY

18.2% 26.1% 38.5%

COMMUNICATION 
USE POLICY

13.9% 25.4% 32%

DATA DESTRUCT 
PROCEDURES

12.9% 21% 27%

COMP EMERGENCY 
RESPONSE PLAN

13.4% 18.8% 26.2%

BUSINESS 
CONTINUITY POLICY

21.5% 23.9% 20.5%

COMP EMERGENCY 
RESPONSE TEAM

7.18% 13.8% 18%

MEDIA DESTRUCTION 
PROCEDURES

6.7% 9.4% 17.2%

INFO 
SENSITIVITY CODING

13.4% 25.4% 11.5%

Table 11 displays the changes in the technologies 
used by the survey respondents to prevent, detect, 
and resolve information security problems. The 
results indicate a sharp increase in the use of fire-
walls, shredders, and intrusion detection systems, 
but a surprising decline in the use of system access 
control and redundant systems.

TABLE 9: ACCESS TO COMPUTERS AND NETWORKS TABLE 10: INFOSEC POLICIES AND PROCEDURES
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2000 2003 2008

ANTI-VIRUS SOFTWARE 87.1% 56.5% 95.9%

FIREWALLS 25.8% 42.8% 90.2%

POWER SURGE 
PROTECTORS

70.3% 79.7% 84.4%

DATA BACKUP SYSTEMS 75.1% 65.2% 71.3%

SHREDDERS 44.5% 48.6% 68.9%

ENCRYPTION 25.4% 18.8% 41.8%

SYSTEM ACCESS 
CONTROL

72.7% 58% 39.3%

INTRUSION DETECTION 22.5% 25.4% 37.7%

FACILITY ACCESS 
CONTROL

14.4% 17.4% 26.2%

REDUNDANT SYSTEMS 45.5% 34.8% 25.4%

DATA SEGMENTATION 28.7% 23.9% 21.3%

SYSTEM ACTIVITY 
MONITOR

15.8% 21% 20.5%

SECURITY 
EVALUATION SYSTEMS

11.5% 8.7% 13.9%

MEDIA DEGAUSSERS 3.3% 0.7% 5.7%

DIAL-BACK MODEM 10% 8.7% 2.5%

Table 12 displays the changes in the importance of 
several types of data to the respondents of the survey, 
recorded on an interval scale from 0 (not important) 
to 5 (extremely important). The results indicate a 
steady increase in the importance of customer, pri-
vacy, proprietary, trade secrets, and competitive data. 

TABLE 12: DATA IMPORTANCE

2000 2008

DATA CORRUPTED 
or PARTIALLY LOST

28.7% 19.7%

PROBLEMS WITH 
VIRUS/MALICIOUS SW

20.6% 18.0%

EMPLOYEES ABUSED 
INTERNET PRIVILEGES

6.7% 12.3%

PROBLEMS WITH 
RELIABILITY OF IS

18.2% 12.3%

EXPERIENCED 
I.S. INCIDENT

8.6% 6.6%

Table 13 displays the changes in information security 
issues and problems experienced by the survey respon-
dents in two separate studies conducted in 2000 and 
2008. The results indicate that data corruption and 
problems with viruses and malicious software remain 
the highest concerns for small businesses. The results 
also indicate a sharp rise in abuse of Internet privileges.

TABLE 11: INFORMATION SECURITY TECHNOLOGIES
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TABLE 13: INFOSEC EXPERIENCES 

2000 2008

DATA CORRUPTED 
or PARTIALLY LOST

28.7% 19.7%

PROBLEMS WITH 
VIRUS/MALICIOUS SW

20.6% 18.0%

EMPLOYEES ABUSED 
INTERNET PRIVILEGES

6.7% 12.3%

PROBLEMS WITH 
RELIABILITY OF IS

18.2% 12.3%

EXPERIENCED 
IS INCIDENT

8.6% 6.6%

OUTSIDER 
BREAK-IN TO I.S.

1.9% 5.7%

INSIDER ABUSED 
INFO PRIVILEGES

3.3% 5.7%

VICTIM OF FRAUD 3.8% 4.1%

LOST MONEY DUE TO 
I.S. PROBLEM

9.1% 3.3%

VICTIM OF A 
NATURAL DISASTER

3.3% 3.3%

COMPUTER 
EQUIPMENT STOLEN

2.9% 3.3%

PROPRIETARY 
DATA STOLEN

1.0% 2.5%

SECRET 
INFORMATION DIVULGED

1.9% 2.5%

IMPLICATIONS FOR SMALL BUSINESSES

These study findings support the model that transfor-
mational leadership augments transactional leadership 
in predicting effects on employees. Bass and Avolio 
(2004) supported the model with evidence and noted 
that transactional leadership provides a basis for 
effective leadership, but a “greater amount of Extra 
Effort, Effectiveness, and Satisfaction is possible from 
employees by augmenting transactional with transfor-
mational leadership” (p. 22).

The study also highlights the need to complement 
the benefits of transformational and transactional 
leadership styles with effective policies and updated 
technologies that mitigate information security prob-
lems. Small businesses cannot rely primarily on basic 
technologies such as anti-virus software, firewalls, and 
power surge protectors — the top three technologies 
in Table 6 — to protect against cybercrime. Likewise, 
small businesses cannot rely primarily on basic data 
recovery procedures and information security policies 
and procedures for protection against cybercrime. 

Recommendations

The first recommendation for small business leaders 
is to introduce a systematic and consistent system 
of leadership assessment within their organization. 
The Multifactor Leadership Questionnaire (MLQ), 
available from Mind Garden Inc. (2008), is a valid 
and reliable survey instrument for assessing leader-
ship styles within a small business. The results of 
this research study highlight the importance of three 
leadership factors that are components of transfor-
mational and transactional leadership styles. These 
leadership factors are Idealized Influence Attributes 
(IIA), Contingent Reward (CR), and Management-
by-Exception Active (MBEA). Small business leaders 
can evaluate their scores on these three leadership 
factors by using the MLQ (Rater Form) with their 
subordinates.

The second recommendation is for small busi-
nesses to conduct an audit of their information 
security. A website (ReadyBusiness, 2015) and guide 
published by the US Department of Homeland 
Security (2015) provides a detailed checklist to con-
duct security assessments within small businesses. 
Additional detailed guides from NW3C (2015) and 
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ISO/IEC (2015) provides a risk audit for very small 
businesses, with 10 or less employees, who were the 
primary respondents for this research study. 

The third recommendation is to utilize a combination 
of leadership styles, technology and policy to combat 
specific security problems and concerns, as displayed 
in Table 14. It should be noted that small businesses 
should adopt a cost-effective and practical approach 
to security solutions. For example, deploying an 
internal computer emergency response team (CERT) 
or installing an Intrusion Detection System (IDS) may 
not be realistic for many small businesses. However, 
small businesses could rely on security training, 
outsourcing solutions and computer use and misuse 
policies to alleviate the security threats. The key is that 
one leadership style is not applicable to all security 
problems and that technology and policy solutions 
need to be augmented with leadership and knowledge

Suggestions for Future Research

Based on the study findings, two suggestions are 
offered for further research. The first suggestion is to 
conduct additional studies in several small and large 
states in the United States and broaden the sample 
population. This expansion may result in findings that 
are based on experiences of small business in various 
situations that are not relevant to the state of Hawaii. 
Additional research may be conducted in overseas 
countries that contain small businesses with profiles 
similar to those of small businesses in the United 
States. This global exposure will provide researchers 
with insight into global security problems and issues. 

Another suggestion is to conduct similar studies on an 
ongoing basis for the next decade. Given the evolving 
nature of cybercrime and information security, the 
attitudes and exposures of small businesses vary over 

SECURITY PROBLEM Leadership Style Technology and Policy to Augment Leadership Style

INSIDER ACCESS ABUSE Transactional 
Computer Emergency Response Team, 
Encryption Technology

VIRUSES Transactional Anti-virus software, Computer Emergency Response Plan

DATA INTEGRITY Transactional
Intrusion Detection Systems, 
Computer Use and Misuse Policy

OUTSIDER ACCESS ABUSE Transactional Intrusion Detection Systems

DATA SECRECY Transformational
Information Security Policy, 
System Activity Monitors, Anti-virus software

DATA AVAILABILITY Transactional Computer Use and Misuse Policy

DATA THEFT Transactional
Computer Emergency Response Team, 
Anti-virus software, System Activity Monitors

DATA SABOTAGE Transactional
Computer Emergency Response Team, 
Intrusion Detection Systems

USER ERRORS Transactional
Computer Emergency Response Team, 
Anti-virus software

NATURAL DISASTER Transactional Computer Emergency Response Plan

FRAUD Transactional Computer Emergency Response Team

TABLE 14: CYBERCRIME LEADERSHIP, TECHNOLOGY AND POLICY 
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time. As such, regular studies conducted over a long 
period of time will provide researchers with details on 
trends and new issues. The results from these studies 
will provide researchers with a comprehensive evalu-
ation of the growth and evolution of cyber crime and 
the abilities to combat it.

CONCLUSIONS

This research study is socially significant in its finding 
that leadership styles are statistically significant when 
it comes to mitigating information security issues and 
concerns within small businesses. Small business lead-
ers are preoccupied with everyday business issues and 
concerns and often display a lack of concern towards 
information security problems. A lack of concern 
usually results in delayed or incorrectly implemented 
security measures, which increases vulnerability to 
cyber crime (Andress, 2003).

This research has demonstrated the need for effective 
transactional and transformation leadership styles 
that will enable small business leaders to prioritize 
their efforts to mitigate cyber crime. An optimal 
combination of leadership styles, security policies, 
and technology enable small businesses to prevent and 
combat cyber crime.

REFERENCES CITED
Adamkiewicz, S. L. (2005). The correlation between productivity and 
the use of information security controls in small businesses. The 
George Washington University, United States — District of Columbia.

Andress, A. (2003). Surviving security: How to integrate people, 
process and technology. New York: Auerbach Publications.

Baker, W. H., & Wallace, L. (2007). Is information security 
under control? IEEE Security & Privacy.

Bass, B. M., & Avolio, B. (2004). The multifactor 
leadership questionnaire: Sampler set.

CoCHawaii. (2015). The Chamber of Commerce of Hawaii. 
Retrieved May 26, 2011, from http://www.cochawaii.com/.

CSI/FBI. (2015). Computer Crime and Security Survey XI Annual. 
Retrieved September 3, 2015, from 
http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2006.pdf.

Day, K. (2003). Inside the security mind: Making tough 
decisions. Upper Saddle River, NJ: Prentice Hall.

DeZulueta, M. (2004). A novel neural network based system for 
assessing risks associated with information technology security 
breaches. Florida International University, United States — Florida.

Easttom, C. (2006). Computer security fundamentals. 
Upper Saddle River, NJ: Prentice Hall.

Gupta, A., & Hammond, R. (2005). Information systems security 
issues and decisions for small businesses: An empirical examination. 
Information Management & Computer Security, 13(4), 297.

Homeland Security. (2015). Tools for small business. Retrieved September 3, 
2015, from http://www.ntsbdc.org/docs/sba_homeland_security.pdf

ISO/IEC. (2015). ISO/IEC 17799:2005 Information 
technology — security techniques. Retrieved September 3, 2015, 
from http://www.iso.org/iso/information_security.

MindGarden. (2015). Multifactor Leadership Questionnaire. Retrieved 
September 3, 2015, from http://www.mindgarden.com/products/mlq.htm

Northouse, P. G. (2004). Leadership: Theory and 
practice. Thousand Oaks, CA: Sage.

NW3C. (2015). National White Collar Crime Center. Retrieved 
May 26, 2015, from http://www.nw3c.org/. 

O’Rourke, M. (2003). Cyberattacks prompt response to 
security threat. Risk Management, 50(1), 8.

ReadyBusiness. (2015). Ready.Gov—small business readiness. Retrieved 
September 3, 2015, from http://www.ready.gov/business/index.html.

Rubin, A., & Babbie, E. (2005). Research methods for social 
work (5th ed.). Belmont, CA: Brooks/Cole-Thomson.

Ryan, J. J. C. H. (2000). Information security practices and 
experiences in small businesses. The George Washington 
University, United States — District of Columbia.

SBA. (2015). US Small Business Administration. Advocacy Small 
Business Statistics and Research. Retrieved September 3, 2015, 
from http://app1.sba.gov/faqs/faqindex.cfm?areaID=24. 

SBH. (2015). Small Business Hawaii. Retrieved September 3, 2015, 
from http://www.smallbusinesshawaii.com/SBHabout.html.

The state of small business security in a cyber-economy: 
Hearing before subcommittee on regulatory reform and 
oversight of the committee on small business, US House of 
Representatives, 109th Congress Second Sess. (2006).

Symantec. (2015). Small and mid-sized business products. Retrieved 
September 3, 2015, from http://www.symantec.com/smb/products/index.jsp.

Szor, P. (2005). The art of computer virus research and 
defense. Upper Saddle River, NJ: Symantec Press.

Wall, D. S. (2005). The internet as a conduit for criminal activity. 
In A. Pattavina (Ed.), Information technology and the criminal 
justice system. Thousand Oaks, CA: Sage Publications.

Evolution of Information Security Issues in Small Businesses  Evolution of Information Security Issues in Small Businesses  

 43NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3



AUTHORS

Debasis Bhattacharya (debasisb@hawaii.edu) is cur-
rently a faculty member at the University of Hawaii 
Maui College and is responsible for the Applied 
Business and Information Technology program. 
Dr. Bhattacharya has worked in the software indus-
try for 27 years for large mainland corporations such 
as Oracle and Microsoft Corporation. He has lived 
on Maui, Hawaii, for the past 13 years and has been 
actively researching the information security needs of 
small business owners since 2008. 

Debra A. Nakama (debran@hawaii.edu) has more than two 
decades of experience implementing federal workforce 
and economic development career pathways from 
middle school to community college to the workforce. 
Over the last 10 years, with the Maui Educational 
Consortium, a K–16 cross-level teachers and adminis-
trators group, Dr. Nakama has focused on designing 
evaluations using longitudinal intervention strategies 
as a way of informing K–12 and college stakehold-
ers of effective methods for increasing the college 
matriculation rates of underachieving populations.

Hybrid Implementation of Flipped Classroom Approach to Cybersecurity EducationEvolution of Information Security Issues in Small Businesses  

 44 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3  



Hybrid Implementation of Flipped Classroom 
Approach to Cybersecurity Education

Aparicio Carranza | Casimer DeCusatis

ABSTRACT

A flipped classroom is a pedagogical model in 
which the typical lecture and homework/lab por-
tions of a course are reversed. Students review 
course content each week on their own time, 
and then devote class time with an instructor 
to a discussion of the prepared material and 
hands-on practice exercises. The notion of a 
flipped classroom has been studied extensively, 
and draws on such concepts as active learn-
ing, student engagement, and hybrid course 
design. We discuss the cybersecurity teaching 
for Computer Engineering Technology students 
at New York City College of Technology (NYCCT), 
of the City University of New York (CUNY) using 
a version of the flipped classroom. NYCCT is an 
open institution and is a federally designated 
Hispanic Serving Institution (HSI) with a sig-
nificant population of women and other groups 
which are under-represented in IT fields. A ver-
sion of the flipped classroom has proved to be 
an effective way of engaging the students in the 
study of computer security. The courses have 
unique requirements because students need 
an environment to practice their hacking skills 
which is isolated from the outside world (a virtual 
lab setting is used for this purpose). Individual 
students also prepare two short case studies 
on cybersecurity topics of their choosing and a 
semester-long research project. Since this is an 
elective special topics course, there are no tradi-
tional exams or tests. We employ a hybrid model 
in which alternate class meetings are met using 
Skype. We present a detailed discussion of the 
methods used in this course and feedback from 
students with their recommendations for broader 
adoption of this approach. 

 

 

INTRODUCTION

There has been a significant increase in the number, 
severity, and complexity of attacks against com-
puter infrastructure in recent years. For example, the 
number of vulnerabilities catalogued by the NIST 
database of Common Vulnerabilities and Exposures 
(VCE) increased 30% between 2014 and 2015, includ-
ing nearly 10,000 new incidents in the past year 
alone (Cisco 2014 annual security report). Given 
the fundamental importance of a secure computing 
environment for many lines of business, cybersecurity 
has been widely recognized as a national priority by 
such organization as the Department of Homeland 
Security, NSF, NIST, and the Office of the President 
of the United States (White House, 2015; Obama, 
2015; Exec. Order No. 13636 (2013); Presidential 
Policy Directive, 2013). Cybersecurity has also been 
recognized as a critical asset in most leading aca-
demic, industry, and government organizations. 
Degree programs and specializations in cybersecu-
rity are widely offered as part of the undergraduate 
portfolio by many computer science and information 
technology (IT) programs worldwide, according to 
the National Initiative for Cybersecurity Careers and 
Studies and other sources (National Initiative for 
Cybersecurity Careers and Studies, 2015; Corno, 2014; 
IT Career Finder, 2014–2015; The National Initiative 
for Cybersecurity Education, 2015; ACM Curricula 
Recommendations, 2015). Without additional 
education programs in this field, the IT industry will 
continue to face a shortfall of between one and two 
million trained, certified security professionals within 
the next five years (Corno, 2014; IT Career Finder, 
2014–2015). Current analyst reports note that hiring 
demand for security experts has increased steadily 
over the past three years in both government and 
private sector positions and that security is the only 
area of certified IT skills that has never had a negative 
quarter since 2008 (IT Career Finder, 2014–2015). 
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The National Institute for Cybersecurity Education 
has recently encouraged the formation of new 
formalized cybersecurity education programs (The 
National Initiative for Cybersecurity Education, 
2015). The Association of Computer Machinery 
(ACM), in work supported by the National Science 
Foundation, has also produced curriculum recommen-
dations for cybersecurity education (ACM Curricula 
Recommendations, 2015). A recent National Science 
Foundation workshop emphasized the need for bet-
ter security education in undergraduate computer 
science programs and the need to treat cybersecurity 
as a foundational, multi-disciplinary skill (much like 
courses in operating systems). This report cites a par-
ticular need to encourage increased participation from 
traditionally under-represented students in this field. 

Conventional approaches to information security 
education are hard pressed to prepare enough students 
with the right skills to meet rapidly growing demand 
in this field. While industry certification programs 
are available, they tend to emphasize memorization 
and repetition over a deeper cognitive framework or 
understanding. It can be quite challenging to prepare 
students for IT careers in this rapidly evolving field 
or to integrate these offerings into a more tradi-
tional undergraduate engineering curriculum. More 
hands-on experience is desirable since students must 
be prepared to deal with not only existing security 
threats but also new and increasingly complex exploits 
which emerge more frequently each year. However, 
students require a secure, isolated environment in 
which to practice their security skills without risking 
damage to the campus data centers or servers on the 
Internet. Until recently, it was not cost effective to 
provide students with access to real world examples 
of IT infrastructure. There have been several reports 
about the need to reform engineering and computer 
science education (Wilcox, Wilcox, 2013), as well as 
reports on the transformative power of early cur-
riculum redesign efforts in this field. As part of this 
transformation, the gap between teaching methods 
and practitioner’s skills can be addressed, at least in 
part, through new teaching models such as flipped 
classrooms (Bishop, Verleger, 2013; Sams, Bergmann, 
Daniels, Bennet, Marshall, Arfstrom, 2014; Carranza, 
DeCusatis, 2015) and increased academic partner-
ships, the latter having been shown to help foster 
interdisciplinary education. 

In this paper, we discuss a new undergraduate pro-
gram in cybersecurity for Computer Engineering 
Technology students using the hybrid flipped class-
room approach. This program was recently piloted at 
the New York City College of Technology (NYCCT), 
which is part of the City University of New York 
(CUNY) system, an environment with a significant 
population of economically challenged, nontradi-
tional students. We have also implemented a variation 
of this approach at Marist College, a private liberal 
arts school in upstate New York. We discuss imple-
mentation of these approaches, including not only 
technical skills training but also the promotion of 
critical thinking, systems analysis, and interpersonal 
skills. A version of the flipped classroom has proved to 
be an effective way of engaging students in the study 
of computer security. We present a detailed discus-
sion of the methods used, feedback from students and 
faculty, and recommendations for broader adoption 
of this approach. 

CYBERSECURITY EDUCATION GOALS

We have implemented cybersecurity education pro-
grams at two major institutions, NYCCT and Marist 
College. Marist is a private, co-educational, liberal arts 
college founded in 1905 by the religious order of the 
Marist Brothers and subsequently accredited by the 
state of New York in 1929. Organizations such as the 
Princeton Review and U.S. News and World Report 
consistently rank Marist as among America’s best 
colleges, best college values, and best regional schools 
in the country. Recent enrollment includes about 5,000 
undergraduates and 1,000 graduate students. Marist 
maintains foreign study programs in 26 countries, and 
over 50% of undergraduate students include some 
form of international study program in their degree 
program (significantly higher than the national aver-
age of about 7%). The School of Computer Science 
and Mathematics is the largest and fastest growing 
school within the college. In January 2013 the State 
of New York approved a $3 million grant to establish 
the Cloud Computing & Analytics Center (CCAC) 
at Marist College. As part of this effort, Marist 
has established a test bed for next generation cloud 
computing research, and also hosts cloud workloads 
for local businesses and government organizations. 
Marist has recently begun a significant educational 
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and research program devoted to cybersecurity, 
including various types of security education and 
training, developed in collaboration with the School 
of Criminal Justice and various industry partners. 

NYCCT, or City Tech, is the designated senior 
college of technology within the 24-unit City 
University of New York (CUNY), the largest urban 
public university system in the nation. The National 
Science Foundation ranks City Tech third nation-
ally in the number of associate-level science and 
engineering degrees awarded to Black students, 
23rd in degrees awarded to male students, and 
48th in degrees awarded to women. Fall Semester 
2013 student enrollment was 16,803, of whom 35% 
attended part-time. The student body reported 138 
different countries of origin. As an open access 
institution, City Tech’s historic mission has been to 
offer opportunities for educational advancement 
to students regardless of financial circumstances or 
prior academic achievement. The college is a feder-
ally designated Hispanic Serving Institution (HSI). 
The primary goal for CUNY students concentrat-
ing on cybersecurity is to provide the background 
necessary to enable them to become successful IT 
practitioners, including information security admin-
istrators, architects, and testers, within the context 
of a broader knowledge of Computer Engineering. 
We are particularly interested in local job oppor-
tunities in the nearby Wall Street financial district, 
where many employers are actively deploying cloud 
computing environments and have a significant 
interest in data security. There are a limited num-
ber of available hours in our curriculum that are 
not previously dedicated to other requirements, 
so it is important to prioritize key concepts and 
skills for any new course offering. The Computer 
Engineering curriculum at City Tech allows students 
to earn a two year Associate of Applied Science 
degree in Electro-Mechanical Technology. After 
completing two years of additional coursework, 
students can earn a Bachelor of Technology degree 
in Computer Engineering Technology. These pro-
grams are Accreditation Board for Engineering and 
Technology, Inc. (ABET) accredited. Cybersecurity 
is included as an elective course component during 
the junior/senior year.

The fundamental concepts which students should 
understand after successfully completing a course of 
study in cybersecurity include the following: 

 � Framework and key concepts based on 
established cybersecurity certifications

 � Hands-on experience in cyber 
defense tools and techniques

 � Security governance and ethics

 � Penetration testing of data center 
servers, storage, and networks

 � Implementing data confidentiality, 
integrity, and authentication 

 � Managing mobile device and wireless security 

 � Programming security scripts and compiled 
code based on open industry standards, and 
contributing to open source software projects

 � Understanding recent use cases in information 
security as a basis for future threat assessment 

FLIPPED CLASSROOM APPROACH

The so-called flipped classroom is a pedagogical 
model in which the typical lecture and homework ele-
ments of a course are reversed (Bishop, Verleger, 2013; 
Sams et al. 2014). There is no single model for the 
flipped classroom. The term is widely used to describe 
almost any class structure that provides students with 
resources (such as reading assignments) which are to 
be studied prior to regular class meetings. The value 
of this approach lies in re-purposing class time into 
a workshop where students can ask questions about 
the class resources and interact with their peers in 
hands-on activities. Instructors function as coaches or 
advisors, encouraging students to individually pursue 
their interests and collaborate on class projects. This 
approach draws from other educational concepts such 
as active learning, student engagement, and hybrid 
course design. Fully realized, this approach can 
provide a radical change in the classroom dynamic. 
A number of higher education institutions have 
recently begun experimenting with the flipped class-
room approach, including Harvard, Penn State, and 
Algonquin College (Sams et al. 2014). 

In a traditional lecture, students often try to capture 
what is being said at the same instant the speaker 
makes a comment. Students can’t stop to reflect on 
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what’s being said, and may miss significant points in 
their haste to transcribe the instructor’s words. In a 
flipped classroom, students control the rate at which 
they absorb and reflect upon new materials. This may 
be particularly effective for students with accessibility 
concerns, or for whom English is a second language. 
Devoting class time to conceptual understanding may 
give instructors a better chance to observe and correct 
student errors. Collaborative or group projects further 
these goals by encouraging social interaction among 
students, making it easier for students of varying skill 
levels to support each other. 

Of course, there are potential pitfalls associated with 
a flipped model. An effective flip requires careful 
preparation by the instructor, particularly in the early 
part of the course. Instructors should also seek out 
additional opportunities to interact with their stu-
dents outside the traditional classroom. Instructors 
give up their traditional front-of-the-class position in 
favor of a more collaborative and cooperative role. 
Student roles change as well, as they become more 
active participants in their own learning experience. 
The flipped model gives students more opportunities 
to experiment while placing more of the responsibility 
of learning on the student. Students and instructors 
may be uncomfortable in these new roles, or may not 
appreciate the value of hands-on exercises. On the 
other hand, when a flip is done well, it can shift the 
priorities of the class from merely covering material to 
working towards the achievement of deeper insights 
which can be applied to new situations beyond the 
scope of the current course examples. We will discuss 
variations on the flipped classroom model which 
attempt to preserve many of its strengths while over-
coming some of its known weaknesses. 

INSTRUCTIONAL MATERIALS

Marist College offers an Introduction to 
Cybersecurity course using the textbook Elementary 
Information Security by R. Smith (second edition, 
2015). While this is a large book for a one semester 
course (over 16 chapters), it provides students with 
ample opportunity to conduct independent reading 
assignments. Marist also offers courses in Hacking 
and Penetration Testing (based on S. Oriyano’s book, 
second edition, 2015) and Mobile Security (based on J. 
Dougherty’s book, second edition, 2014). Prerequisites 

for these courses include classes such as Introduction 
to Programming, Data Communication, and 
Internetworking. The introductory course was offered 
for the first time in fall 2015, with an enrollment of 30 
students. 

The required textbook for the NYCCT Cybersecurity 
class is Penetration Testing: A Hands-On Introduction 
to Hacking by G. Weidman (2014). This course does 
not assume any prior knowledge of Windows, Linux, 
or computer networking, although an introductory 
programming course is prerequisite (such as C or 
C++). As a supplemental text, the course also uses 
Applied Information Security, a Hands-on Guide to 
Information Security Software by R. Boyle and J. 
Proudfoot (2014). The supplemental text is used pri-
marily for teaching Windows security and command 
line management techniques. Currently the course is 
offered as an elective for undergraduate junior and 
senior students in computer engineering technology. 
The course was offered for the first time in 2014 with 
an enrollment of 22 students. 

For computer security labs, it is essential to provide 
students with an isolated, “sandbox” environment to 
practice their hacking skills. There is always concern 
that a student will decide to experiment on their own 
using the campus network or the Internet, which 
introduces liability issues for the college and instructor 
as well as the potential for students to do significant 
damage (either accidentally or intentionally). For the 
Marist courses, labs are conducted in a secure cloud 
computing environment and isolated from the rest of 
the campus network. For the NYCCT course, students 
perform labs on their own computers which are not 
allowed to access the Internet from campus. At the 
start of both courses, students are introduced to the 
ethical conduct standards and practices published by 
the IEEE and ACM, which they are expected to follow 
throughout the course.

FLIPPED CLASSROOM ENVIRONMENT

NYCCT has implemented a more classic flipped 
classroom approach following an initial period of 
two weeks in which their computers are provisioned 
with the required security environment tools. Students 
receive instruction on how to set up a VMware virtual 
environment which is used for the rest of the course, 
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including a review of basic programming tech-
niques a general introduction to Linux and a specific 
introduction to Kali Linux. The desktop version of 
VMware Player, available for free on Windows and 
Linux Operating Systems, is used. Kali Linux is a 
Debian-based Linux distribution that comes with a 
wide variety of pre-installed security tools that are 
employed throughout the course. All of the students’ 
virtual machines (VMs) are placed on the same virtual 
network using a bridged connection with static IP 
addresses (the same connection as the host system 
without the default network address translation nor-
mally enabled on Kali Linux). Kali Linux includes the 
Ming C compiler and the GNU Compiler Collection 
(GCC) for compiling code to run on Windows sys-
tems, as well as interpreters for Python and Pearl. (For 
example, students can write exploits in Python shell 
scripts for this course.) The course also uses other 
free software not included in the Kali Linux distribu-
tion. This includes the open source version of the de 
facto industry standard Metasploit Framework, which 
makes it quick and easy to explore well over a thou-
sand known system vulnerabilities. Other software 
used in this class includes the Hyperion encryption 
program (to bypass antivirus software), Veil-Evasion 
(which creates payload executables capable of bypass-
ing common antivirus solutions), Ettercap (a tool for 
man-in-the-middle attacks), and Tenable Security’s 
Nessus Home vulnerability scanner. Optionally, 
Android SDK emulators are used for mobile security 
testing. Students create custom-build target machines 
to simulate vulnerabilities often found in real-world 
systems using Windows 7, Windows 8, Ubuntu, 
Fedora, or CentOS. 

Following the initial setup period at NYCCT, teams 
of between two and four students are expected to 
complete weekly reading assignments and submit 
completed lab reports. There are no fixed deadlines on 
lab project submission, although students are provided 
with a recommended timetable and are required to 
complete nine labs during a 15 week semester (this 
accounts for 50 % of their total grade). Class meet-
ings are used to discuss the material and help students 
work their way through the curriculum. In this course, 
students are encouraged to seek out the instructor 
at any time using Skype video conferencing tools to 
discuss their progress. In this way, student/instructor 
interaction is not limited to weekly class meetings and 
students can interact with the instructor individually 

or in small groups. In addition to lab assignments, 
students complete two case studies during the semes-
ter. Each case study is a short paper (typically five 
pages, though there is no upper limit) on a topic 
approved by the instructor which is of interest to the 
student. Each case study is worth 10 % of the student’s 
final grade. Finally, 30 % of the student’s final grade is 
based on a research paper and oral presentation to the 
class at the end of the semester. Research papers are 
longer than case studies, typically 8 – 15 pages (though 
again, there is no upper limit) and are accompanied 
by a 15 – 30 minute oral presentation which is recorded 
to provide feedback to the students. Examples of 
student research paper topics include analysis of the 
Heartbleed Exploit, cognitive security based on the 
Turing Test, and computer forensics using the Kane 
software package. Students benefit from hearing and 
critiquing oral presentations on a variety of topics, so 
the instructor assures that each group of students has 
a unique subject to present. 

Response to this new course and format has been 
overwhelmingly positive. Initially a few students 
expressed concern about the lack of traditional mid-
term and final exams. However, such concerns were 
quickly offset by the student’s enthusiasm for this 
topic and the flexibility to choose subjects which they 
found interesting for their case studies and final proj-
ects. Student evaluation forms completed at the end of 
the course contained many positive comments and not 
a single complaint on the lack of conventional exams; 
student write-in comments cited this course as among 
the best classes they have ever taken. The initial class 
of students has reported strong interest from industry 
employers in this field and high placement rates for 
the initial group of students. Students are encour-
aged to pursue novel, open source implementations or 
contributions to the Kali Linux libraries and submit 
their work for presentation at local professional con-
ferences. This not only provides excellent experience 
for the students and promotes interpersonal com-
munication skills, but also exposes them to potential 
employers in the region. Several students from this 
class went on to present their research projects at 
IEEE sponsored technical conferences (Carranza, 
Carranza, 2014; Zafar, Carranza, 2014; Flores, Piure, 
Carranza, 2014; Estrella, Carranza, DeCusatis, 2015). 
Several students are also exploring collaborations 
with other academic research institutions, including 
the New York State Cloud Computing and Analytics 
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Center at Marist College. The instructor evaluation 
reported higher than normal workload during the first 
2 – 3 weeks of the course and assessed their workload 
for the rest of the course as being consistent with a 
traditional stand-up lecture/exam format.

HYBRID FLIPPED CLASSROOM 
ENVIRONMENT

While the classic flipped classroom model has proven 
successful during initial trials at NYCCT, there are 
also some potential drawbacks. When introducing new 
concepts such as encryption and public key cryptogra-
phy, students can benefit from a lecture which presents 
the concepts from a point of view different from the 
textbook, prompting the students to ask questions 
which they may not have otherwise considered. This 
includes making explicit connections with different 
parts of the curriculum which might otherwise be 
missed by students working independently. At Marist 
College and NYCCT, we have explored a hybrid 
approach which incorporates some of the independent 
learning benefits from a fully flipped classroom with 
the benefits of more traditional classroom lectures. 

For example, a student with a background in Java 
programming who independently studies the security 
implications of buffer overflows may wonder if  the 
Java stack and heap are subject to overflow attacks. 
The simple answer (which the student would find on 
their own with a short review of online resources) 
is that a memory managed language such as Java 
mandates automatic array bounds checking, throws 
an exception when a method attempts to access array 
elements that are out of bounds, and then a try-catch 
loop handles the exception, making buffer overflows 
impossible. In many classrooms, this would be the end 
of the discussion. However, this question provides a 
teachable moment: the instructor should expand on 
the original question and lead the student to use their 
own Java experience to consider whether other cir-
cumstances might lead to security risks in Java array 
handling. For example, if  the Java Virtual Machine 
(JVM) or Java Development Environment (JDE) is 
written in another language such as C++, the JVM or 
JDE might be vulnerable to buffer overflows. Calling 
the Java Native Interface provides unmanaged pointer 
access. Further, there may be errors in the code which 
incorrectly handle the array-out-of-bounds exception; 

if  an attacker can trigger enough exceptions by enter-
ing invalid inputs, an effective denial of service attack 
can be launched. In this manner, a prepared instructor 
can introduce new concepts (such as attack vectors for 
denial of service attacks) while reinforcing the text-
book answer on Java buffer overflow attacks. There 
is value in preparing brief  lecture notes along these 
lines and introducing the topic during class even if  the 
students fail to ask the original question. 

This example illustrates the benefits of a so-called 
hybrid flipped classroom for cybersecurity educa-
tion. While students are still held responsible for 
independent learning from the class resources, time 
is allocated from each class period for a structured 
lecture component. In addition to broadening the 
student’s experience, it is prudent for instructors to 
have some presentation materials prepared in advance 
for common questions which arise on mathemati-
cally intensive subjects such as cryptoanalysis, key 
wrapping, Diffe-Helmann, Riverst-Shamir-Adelman 
(RSA), and other common elements of the cyber-
security curriculum. Reviewing these concepts from 
a different point of view than the text book allows 
students the opportunity to reinforce the new concepts 
by making connections with other learning goals from 
related coursework in programming or math. 

Another important aspect of cybersecurity education 
which lends itself  to a hybrid approach is supple-
menting the class resources with recent examples 
of real world security breaches. Students in the 
Marist College program and at NYCCT are also 
given hands-on experience with lab tools such as 
FileZilla, WireShark, MetaSploit, OpenVAS (with 
the GreenBone graphical user interface), Putty, 
Netwitness Investigator, Zenmap, and tftpd64. In 
a hybrid classroom, the instructor also guides the 
student to trusted learning resources covering recent 
cyber attacks (say, within the past three years). 
Students are cautioned to always refer back to a 
trusted reference such as the Common Vulnerabilities 
and Exposures (CVE), rather than gathering all their 
material from blogs or the popular media. 

Understanding the implications of these attacks is 
facilitated by instructor-led discussion, which resem-
bles a traditional lecture more than a flipped question 
and answer session. In the Marist Cybersecurity 
Curriculum, instructors heavily supplement learn-
ing resources with recent examples, often presenting 
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a “hack of the week” during classroom time. This 
reverses the traditional classroom flip, by presenting 
students with the framework of an attack and chal-
lenging them to relate this specific example to their 
understanding of basic security principles. Currently, 
at NYCCT, students are involved with the physical 
implementation of Local Area Networks (LANs) 
using off  the shelf  components. The implementa-
tion consists of three separate server-based LANS: 
Windows 2012 Server, Xen Server, and the VMware 
ESXi sever. Each server will interconnect to four 
or five clients running different Operating Systems 
(Windows 7, Windows 8, Kali Linux, Ubuntu, 
CentOS, etc.). Students experiment with several tools 
that are contained in the Kali Linux distribution. 
The physical LAN setup is in addition to the Virtual 
Laboratory that each student has already implemented 
to carry out their hacking skills in their own laptops 
for the flexibility of being a mobile laboratory. 

For example, the instructor might assign learning 
resources from trusted sources discussing the many 
recent hacks on automobile computer systems as an 
introduction to security for the Internet of Things. 
These resources might include a discussion of the 
Control Area Network (CAN) and onboard diagnos-
tics systems mandated by the federal government on 
all new vehicles since 1996. The instructor then leads 
a discussion about which basic security principles 
are violated by this design (for example, allowing low 
priority systems such as the air conditioning controller 
to access high priority systems such as the brakes is 
an access privileges issue, which leads to a discussion 
about least privileges, denial by default, and defense 
in depth). In the hybrid approach used at Marist 
College, students are also required to complete a 
semester-long case study of their own in which they 
must demonstrate how basic security principles may 
be applied to recent high profile attacks. The instruc-
tor’s lectures provide examples of this technique 
throughout the semester and attempt to teach students 
a constructive way of thinking when they approach 
security problems. Such a framework is critical in a 
rapidly changing field such as cybersecurity, where 
students will almost certainly encounter new hack-
ing techniques and exploits throughout their careers. 
Instructor-led discussions on security fundamentals 
supplements independent student hands-on lab 

experiences so that a student will be equipped to deal 
with new problems that don’t exactly match anything 
previously documented in the learning resources. 

An effective hybrid approach requires careful prepara-
tion by the instructor and provides leading questions 
or supplemental materials which afford many oppor-
tunities to interact with the students. There are still 
useful opportunities for lecture presentations, but 
these are tempered with dynamic classroom environ-
ments in which the instructor and student explore 
new concepts together and the instructor suggests 
how these concepts may easily be incorporated into 
a student’s existing body of knowledge. While the 
roles of instructor and student are transformed from 
the conventional lecture hall approach, the transi-
tion is less dramatic (and thus less stressful) for the 
prepared student and instructor. Response to this 
approach has been overwhelmingly position thus far, 
with the initial class offering in fall 2015 significantly 
exceeding enrollment expectations for a new course 
offering. Student feedback is continuously monitored 
throughout the semester, including anonymous polls 
of student satisfaction with pair programming tech-
niques used in the labs. Students have also contributed 
technical research papers based on their coursework 
(Estrella et al. 2015; Cannistra et al. 2014). Future 
work in this area will investigate the application of 
predictive analytics to the student population in an 
effort to improve early detection of at-risk students. 

ACADEMIC AND 
INDUSTRY COLLABORATION

Cybersecurity is well suited to a hands-on, practi-
tioner-oriented approach and benefits from a closer 
interaction between educators and the IT admin-
istrators at their institutions. More meaningful 
collaboration between different branches of academia, 
or between academia and industry, would also benefit 
students in this field. We have begun to explore col-
laborative opportunities in the region and plan to 
continue developing future efforts in this area. 

Our collaboration extends to the emerging service 
industry perspective on networking and cybersecu-
rity. Faced with a growing gap in practitioners with 
appropriate data center networking and security skills, 
the Institute for Service Industry Professionals (ISSIP) 
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has recently formed a series of working groups on 
topics such as the Internet of Things and Software 
Defined Networking (SDN). The mission of these 
groups includes promoting education, assessing the 
impact of new technologies on required knowledge 
and skill sets, and providing guidance to a consortium 
of academic and industry participants. These efforts 
respond to recent reports from computer industry 
analysis noting the lack of appropriate skills in these 
areas and the need for education reform in an industry 
where most of the networking-related jobs in 2014 
did not exist just a few years ago (Sher-DeCusatis, 
DeCusatis, 2014). The flipped and hybrid flipped class-
room approaches have implications for the network 
service industry and for network education and certi-
fication programs. Preparing for traditional network 
administrative and service roles involves complex, ven-
dor-specific practitioner certification exams which rely 
on memorizing network device configuration com-
mands and learning how to implement hop-by-hop 
distributed security. While these are valuable skills, the 
broader body of knowledge which benefits cybersecu-
rity professionals has historically been de-emphasized 
for networking service practitioners. The flipped and 
hybrid flipped classroom approaches we are develop-
ing can be extended to include features of the rapidly 
evolving network landscape including SDN, Network 
Function Virtualization (NFV), and programmable 
application programming interfaces (APIs) on routers, 
firewalls, and long haul optical networking equipment. 
Indeed, the ability to program network infrastructure 
APIs is rapidly emerging as a key differentiating skill 
for radio network architects and administrators and 
will soon become a requirement for most employers. 

Industry participation in the security curriculum has 
also been facilitated by recent statewide efforts to 
promote cloud computing as an economic growth 
engine. The capabilities and educational benefits of 
the CCAC have been described previously (Cannistra 
et al. 2014; Sher-DeCustatis et al. 2014). In keeping 
with their mission to promote the economic benefits 
of this technology across the state, Marist has formed 
academic partnerships with other public, private, 
and Ivy League schools, including NYCCT as well 
as industry partners including IBM, Brocade, Ciena, 
Adva, and many others. The collaboration between 
multiple industry sponsors and academic partners 
provides a force multiplier which increases the impact 
on a student’s education and is based on the National 

Science Foundation’s Industry and University 
Cooperative Research Center (IU/CRC) model. By 
training students with cybersecurity principles that 
are of interest to the lab’s corporate sponsors, this lab 
provides a very high placement rate for students after 
graduation. CUNY students have the opportunity to 
collaborate with the CCAC and take advantage of 
their facilities to further their interest in cloud security. 
Marist is also developing a series of courses which 
will lead to a degree specialization in cybersecurity, 
leveraging the capabilities of the CCAC lab and its 
academic partners. This nontraditional, federated 
approach to technical education has yielded many 
benefits for the institutions involved and provided 
students with a richer undergraduate experience. 
Students at each of the participating schools can take 
advantage of the test bed at Marist College to conduct 
undergraduate research projects or independent study 
as well as developing a bridge to graduate studies. 
Remote access to the Marist test bed is being enabled 
for wireless devices such as smart phones and tablet 
computers. The CCAC has an established record of 
undergraduate student contributions to open source 
software development projects, which are expected to 
benefit from an increased focus on cloud security. By 
making cybersecurity accessible in this way, we can 
provide a much richer experience for undergraduate 
students with basic programming skills and an interest 
in data networking.

CONCLUSIONS AND FUTURE WORK

The industry-wide emphasis on cybersecurity and 
a recognized shortage of security professionals has 
driven a renewed focus on the cybersecurity educa-
tion process. We have investigated a novel approach 
to cybersecurity education using variations on the 
flipped classroom model. This program appears to be 
particularly well suited to engaging nontraditional and 
under-represented students because of its practical, 
hands-on focus and engagement with other academic 
and industry partners. The curriculum does not 
require extensive prerequisites and can be deployed 
quickly at very low startup cost in an isolated, inher-
ently secure student training environment. We have 
begun to make this technology accessible to a stu-
dent population which includes a high percentage of 
under-represented students, enabling them to pursue 
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opportunities with leading financial companies and 
other employers. Undergraduate students are capable 
of making meaningful contributions to research in 
this area due to the emphasis on open source soft-
ware and industry standard security protocols. In the 
future, we plan to produce more instructional mate-
rials and explore the use of predictive analytics to 
identify at-risk students. 
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Malware Fingerprinting: Analysis of Tool Marks and 
Other Characteristics of Windows Malware

Sean McVey

ABSTRACT

Trojans and other malware are common tools of 
cyber espionage. As such, it is useful to analyze 
attack malware for not only its method of opera-
tion but also for indicators of its origin. This paper 
will introduce the reader to techniques useful in 
the attribution or attempted attribution of Windows 
malware to its author or authors. Malware families 
will be discussed, as will the analysis of strings, 
Dynamic Link Libraries (DLLs), and language indi-
cators. Analysis of command and control (C2) 
schemes will also be covered.

INTRODUCTION

Much has been published about the detection of mal-
ware and the function of different types of malware 
but little has been published on malware attribution. 
This said, malware attribution, which is the process 
of identifying the malware author, is commonly 
conducted by researchers and analysts in academic, 
private, and government organizations. Attribution 
is critical in stopping bad actors (criminal and nation 
state) and can serve as a possible deterrent to other 
would-be attackers. Unfortunately, attribution can 
be elusive, and even the best attempts can fail or 
worse misattribute an attack. Because of this uncer-
tainty, many researchers stop short of providing 
attribution outright. Instead, they hint at a source 
or provide useful clues that allow the reader to draw 
their own conclusions. 

Independent of who is doing the research, malware 
analysis comes down to looking for tool marks (the 
information left behind in the process of creating mal-
ware), analysis of code behavior, and analysis of the 
overall modes of action of the code. These three areas 
can indicate relationships between distinct pieces of 
code, and can point to an individual author or threat 
group. This paper will discuss the types of information 
found in malware that can be useful in attribution. 

METHODS OF MALWARE ANALYSIS

Malware analysis can be broken down into two broad 
categories: static analysis and dynamic analysis. Static 
analysis involves “examining and analyzing the con-
tents of the file without launching it” while dynamic 
analysis involves “loading the file onto a testbed 
system [virtual machine or otherwise] and launching 
it, while monitoring it to determine what effects it has 
on the system” (Carvey, 2005). Static and dynamic 
analysis can be further broken down into basic and 
advanced techniques as described below.

Static Analysis

 �  Basic Static Analysis 

Basic static analysis consists of examining the 
executable file [for human readable stings of text] 
without viewing the actual [code] instructions. 
Basic static analysis can confirm whether a file is 
malicious, provide information about its function-
ality … basic static analysis is straightforward and 
can be quick, but it’s largely ineffective against 
sophisticated malware, and it can miss important 
behaviors (Sikorski & Honig, 2012).
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 � Advanced Static Analysis 

Advanced static analysis consists of reverse-
engineering the malware’s internals by loading 
the executable into a disassembler and looking 
at the program instructions in order to discover 
what the program does. The instructions 
are executed by the CPU, so advanced static 
analysis tells you exactly what the program does. 
However, advanced static analysis has a steeper 
learning curve than basic static analysis and 
requires specialized knowledge of disassembly, 
code constructs, and Windows operating system 
concepts (Sikorski & Honig, 2012).

Dynamic Analysis

 � Basic Dynamic Analysis 

Basic dynamic analysis techniques involve run-
ning the malware and observing its behavior 
on the system in order to remove the infection, 
produce effective signatures, or both … Like basic 
static analysis techniques, basic dynamic analysis 
techniques can be used by most people without 
deep programming knowledge, but they won’t be 
effective with all malware and can miss important 
functionality (Sikorski & Honig, 2012).

 � Advanced Dynamic Analysis

Advanced dynamic analysis uses a debugger to 
examine the internal state of a running malicious 
executable. [Using] advanced dynamic analysis 
techniques provide another way to extract detailed 
information from an executable. These techniques 
are most useful when you’re trying to obtain infor-
mation that is difficult to gather with the other 
techniques (Sikorski & Honig, 2012).

Within these four categories, there is a wide range of 
analysis approaches, from monitoring the changes 
made by the malware code to analysis of the malware 
code itself. Code analysis, such as disassembly of 
the code to its assembly language, “a programming 

language that is one step away from machine lan-
guage”, is considered the most complex technique 
(PC Magazine, n.d.). Advanced techniques provide 
the most detailed picture of the capabilities and func-
tion of the malware code but they take more skill 
and time to do correctly. On the other hand, websites 
such as Virustotal.com and Anubis can offer the 
average user a quick analysis of malware code, but 
may not catch everything. In order to gain a com-
plete picture of the malware (the behavior, mode of 
action, author’s style, and tool marks), it’s likely that 
more than one technique will be needed. Although, 
basic static analysis such as the examination of 
strings (human readable text found in the code) may 
at times hold the smoking gun. 

TOOL MARKS AND THE 
AUTHOR’S SIGNATURE

In traditional forensics, tool marks are defined as “fea-
tures imparted on an object by the contact and force 
exerted from a tool” (Hernandez, 2011). In malware 
analysis, tool marks refers to data found in the code, 
which not only indicate how the code was created, but 
when it was created and much more. Tool marks can 
include file names and paths, complier specific informa-
tion, and other data intentionally and unintentionally 
left behind in the code. Tool marks can be thought to 
fall into three categories: tool marks related to format 
and structure of the code itself, tool marks related to 
creation and debugging of the code, and finally, tool 
marks related to programmer chosen values. This last 
category — programmer chosen values — includes file 
names, registry keys, “shout-outs” to other hackers, 
and other style choices. These programmer specific 
choices can be considered the signature of the author. 
Common tool marks are listed in Table 1 below.
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TOOL MARK TYPE SOURCE

BUILD DATE PE Data

BUILD VERSION PE Data

CHARACTER SET (LANGUAGE) PE Data

CODE STYLE Author

COMMENTS PE Data

FILE AND FOLDER NAMES Author

FUNCTION CALL (SYMBOL) USE Code & Author

LANGUAGE CODE PE Data

MUTEX VALUE Author

NAME MANGLING Code

PACKING PE Data

PROGRAM DATABASE (PDB) 
BUILD PATH

Code & Author

REGISTRY KEY NAMES Author

RICH SIGNATURE Code

SERVICE NAMES Author

UNIQUE STRINGS Author

In Windows systems, the format used for executable 
files is known as the Portable Executable (PE) format 
(Pietrek, 2002). These PE files are structured and 
contain both the executable code, as well as metadata 
about the code itself. PE metadata can include a range 
of information such as the date the file was created, 
the date the code was compiled, version informa-
tion (some malware authors track code versions), 
comments, file packing, and information about the 
language settings of the system it was compiled on 
(Microsoft, 2013). For example, an analysis of the PE 
information of Memory Monitor, an earlier version of 
the malware used in the Target data breach, indicates 
that it was written using Russian language settings 
and was created in March of 2013. Figure 1 includes a 
representation of Memory Monitor’s PE information.

FIGURE 1:

MEMORY MONITOR PORTABLE 
EXECUTABLE (PE) INFORMATION

Notice in Figure 1, the company name and copyright 
information have been set by the malware author 
to Microsoft in an effort to make the program seem 
legitimate. 

PE files created using Microsoft’s Visual Studio pro-
gramming environment contain a signature that can be 
used to track a piece of code to a given machine. The 
rich signature is not part of the PE metadata; instead 
it is placed in the executable when it is compiled. The 
Rich Signature does not contain personally indefinable 
information per se, but does contain “compiler id’s 
which are gathered by the linker” and “contain[s] the 

TABLE 1: USEFUL TOOL MARKS
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version number of the compiler” itself (“Things They 
Didn’t Tell You,” 2004). While the long-term stability of 
this signature is questionable, it serves as distinct signa-
ture of the machine used to compile the code. Memory 
Monitor’s rich signature as decoded by Daniel Pistelli’s 
PE Insider tool is depicted in Figure 2.

 FIGURE 2: MEMORY MONITOR RICH SIGNATURE 

Depending on the programming language the code is 
written in, variable names and other text may be put 
through a process called “name mangling” as part of 
the compiling process. Name mangling helps to avoid 

“name collisions, [and allows for] name overload-
ing, and type checking” (IECC.com, 1999). Name 
mangling can be used for security through obscurity 
and is an important aspect of code obfuscators. 
Name mangling is also highly “compiler dependent” 

(Kefallonitis, 2007). Because each compiler mangles 
names differently yet predictably, analysis of the code 
can indicate the language the code was written in and 
the type of compiler used—useful information when 
profiling a programmer. Examining symbols and the 
Dynamic Link Libraries (DLL) used can further cre-
ate a picture of the programmer’s environment. Usage 
of specific DLLs can indicate the version of Visual 
Studio (Figure 3) or other development environments 
used to create the code. 

Program database (PDB) files were introduced along 
with Visual C++ version 1.0 to hold debug informa-
tion for programs written in Visual Studio (Microsoft, 
2005). PDB paths are tool marks left over from the 
debugging process in Visual Studio. PDB paths won’t 
exist in release code or code not written in Visual 
Studio. When found these paths point to the loca-
tion of the code on the malware writer’s system at 
the time it was compiled. Analysis of PDB paths is 
common because the uniqueness of these paths serve 
as a good fingerprint and can indicate the program-
mer’s name for the malware. At times the PDB path 
can indicate the nature of the malware itself. Analysis 

of the Memory Monitor code (Figure 4) finds that 
at the time it was compiled its author had it saved as 
mmon in x:\Programming\C++\ 2011.08\ScanMemory\
Debug. In this case, “Scan Memory” is a clue to its 
intended function.

DLLS USED IN 
VISUAL C++ 5.0

DLLS USED IN 
VISUAL C++ 6.0

DLLS USED IN 
VISUAL C++ 
.NET 2002

DLLS USED IN 
VISUAL C++ 
.NET 2003

DLLS USED IN 
VISUAL C++ 

2005

DLLS USED IN 
VISUAL C++ 

2008

MSVCRT.DLL MSVCRT.DLL MSVCR70.DLL MSVCR71.DLL MSVCR80.DLL MSVCR90.DLL

MSVCRTD.DLL MSVCRTD.DLL MSVCR70D.DLL MSVCR71D.DLL MSVCR80D.DLL MSVCR90D.DLL

MSVCP50.DLL MSVCP60.DLL MSVCP70.DLL MSVCP71.DLL MSVCP80.DLL MSVCP90.DLL

MSVCP50D.DLL MSVCP60D.DLL MSVCP70D.DLL MSVCP71D.DLL MSVCP80D.DLL MSVCP90D.DLL

MSVCIRT.DLL MSVCIRT.DLL

MSVCIRTD.DLL MSVCIRTD.DLL

FIGURE 3: MICROSOFT VISUAL C++ DLLS BY VERSION (MICROSOFT, 2008) 
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Mutual Exclusion, or Mutex, values are a common 
way to identify code. Mutex values are a normal part 
of many applications that serve to prevent “simulta-
neous access to a shared resource” by running code 
(Janssen, n.d.). Sometimes referred to as mutants, 
malware uses Mutex values to manage process threads 
and prevent re-infecting a machine. Mutex values 
are meant to be unique by design and are set by the 
programmer; because of this they can tie versions of 
malware together into a family if  consistently used. 
Mutex values have also been used to attribute malware 
back to a particular author when reused in attribut-
able code (Hoglund, 2010).

How the malware itself  is written can be used to 
profile the programmer. Use of legacy or outdated 
system and function calls can, for example, hint at the 
age and experience of a programmer (Spafford & 
Weeber, 1992, p. 7). The overall structure, complexity, 
and stability—for example, are there bugs?—of the 
malware can indicate the knowledge and experience of 
the malware author as well (Spafford & Weeber, 1992). 
Filenames, Registry key names, service names, as well 
as arbitrary values such as sleep times and other 
unique constants may all serve to create a fingerprint. 
If  analyzed correctly, strings of almost any type could 

possibly be used to weave malware into families and 
connect author to attributed code. Analysis of the 
Memory Monitor malware uncovers a number of 
strings, including a Registry key and application name 
(Figure 5). Both are useful in detection and 
attribution.      

Malware writers will often times try to obfuscate 
and prevent analysis of their code. The way in which 
malware code is obfuscated along with the presence 
of other anti-forensic techniques may be particular to 
a specific programmer when taken together, and the 
complexity of the protection may speak to the knowl-
edge and skill of the programmer. Some common 
obfuscation and anti-forensic techniques are captured 
in Figure 6.

FIGURE 5: 
MEMORY MONITOR REGISTRY KEY AND SERVICE NAME 

NAME DESCRIPTION TYPE

ANTI-DISASSEMBLY & DEBUGGING Techniques used to slow or prevent analysis of the code Anti-forensic

BASE64 ENCODING
Represents binary data using upper and lowercase letters 
as well as numbers

Obfuscation

PACKING Compression used to obscure the code Obfuscation

VITALIZATION DETECTION Detects when the code is operating in a virtual machine Anti-forensic

XOR Simple binary operation that uses a set key to Obscure the data Obfuscation

FIGURE 6: OBFUSCATION AND ANTI-FORENSICS TECHNIQUES 

FIGURE 4: PDB PROJECT PATH
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Tool marks vary in complexity. Some may only be 
visible using advanced techniques while others such as 
file paths, symbol names, and PDB paths may be 
visible using basic static analysis. While we have 
covered some common tool marks there are many 
more not mentioned here. By using these tool marks 
and others found through static and dynamic analysis 
the attribution process can begin.      

CODE BEHAVIOR

The behavior of malware, what it does, what it’s 
after, and its complexity are factors that should be 
taken into account as part of the attribution process. 
Information stealing malware, for example, is likely 
to have a different motive behind it than a banking 
trojan or adware and the likely motives should be 
taken into account when building an overall picture of 
the attacker. 

Analysis of the complexity of malware code, as well 
as the knowledge needed for it to operate, is also a 
useful point of analysis. A good example of this is 
the Stuxnet malware, which exploited “four 0-day 
vulnerabilities, compromise[d] two digital certificates, 
and inject[ed] code into industrial control systems and 
[hid] the code from the operator” (Falliere, Murchu, 
& Chien, 2011, p. 55). Stuxnet is a highly complex, 
targeted threat designed to attack a specific target, 
likely in Iran (Falliere, Murchu, & Chien, 2011, p. 2). 
The complexity, behavior, and targeted nature of the 
Stuxnet malware make it likely that the group behind 
it had access to intelligence and a wide range of tech-
nical resources. Such a profile indicates that Stuxnet 
was created by a state or state-funded group rather 
than a lone hacker or cybercrime group. In contrast, 
malware such as Memory Monitor is designed to steal 
credit card information, and while budget deficits 
might loom large it is likely that a cyber criminal or 
gang—not a nation state—is behind it. 

Malware can also be examined to reveal individual 
behaviors of the code. Examination of behavioral 
traits instead of signatures often identifies suspicious 
code even if  it had not previously been identified, as 
in the case of 0-day threats. Analysis of our example 

malware with Responder Pro, a malware analysis tool, 
shows a number of suspicious traits including read-
ing the memory space of other processes and possible 
keystroke interception (Figure 7). Automated tools 
greatly aid in analysis of behavioral traits but are not 
necessary. 

MODE OF ACTION

The last area of examination when attempting attri-
bution is analysis of the way the malware infects its 
target, communicates with the outside world, and 
otherwise operates. Methods of delivery, exploitation, 
and command and control (C2) differ widely from 
malware to malware but may be similar between mal-
ware in the same family or even the same threat group.

Delivery

Malware can be delivered to its victim in a number 
of ways. Seemingly harmless files can be infected 
with malware to create trojans waiting to be down-
loaded off  the web, while others may take advantage 
of an infected web server to propagate malware 
code. Delivery of the malware need not be complex 

FIGURE 7: SAMPLE OF MEMORY MONITOR CODE TRAITS 
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in order to be effective. Analysis of major advanced 
persistent threat (APT) campaigns, including APT1 
(Mandiant, 2013), Lurid Downloader (Villeneuve & 
Sancho, 2011), and GhostNet (Information Warfare 
Monitor, 2009) illustrate that sending targeted e-mails 
(spear-phishing) is a favorite technique of APT actors. 
Analysis of the delivery method, including related 
spear-phishing e-mails or trojanized files, provide valu-
able clues about the source and nature of the attack. 

Exploitation

Short of the victim being tricked or “social-engi-
neered” into running malware code, malware often 
exploits a weakness in the operating system or com-
monly used application such as web browsers and 
PDF viewers in order to infect a system. The exploit or 
exploits used can be a point of attribution. As noted 
earlier, Stuxnet exploited not one but four 0-day, i.e. 
previously unknown, vulnerabilities. Again, this speaks 
to the skill and resources of the Stuxnet authors. The 
application exploited can also provide clues to both the 
target and likely source of an attack. Malware target-
ing an application popular in a given region or with 
a group, such as QQ chat popular in China, may hint 
at groups interested in targeting that population (P. 
Breuer, personal communication, February 21, 2014). 

Command and Control

Understanding how malware communicates to the 
outside world is a critical factor in malware attribu-
tion. IP addresses and domain names may be obscured 
but when identified they can point to command and 
control (C2) servers and a responsible party. Further, 
threat actors may reuse the same “infrastructure” of 
servers and hop-points, therefore identifying the C2 
system may speed attribution (P. Breuer, personal com-
munication, February 21, 2014). Analysis of malware 
C2 systems can tell researchers not only about the 
threat actor, but can also help identify victims. Analysis 
of the command and control system of the Koobface 
malware allowed researchers to understand how the 

botnet worked and even identify payments made to 
people involved (Villeneuve, 2010). As illustrated 
in Figure 8 and Figure 9, in analyzing our sample 
malware, a much simpler line of communication is 
identified. An IP address (109.234.159.254) as well as 
a Web address (ree3.7ci.ru) are easily found. 

ANALYSIS AND ATTRIBUTION

Once the tool marks, code behaviors, and mode 
of action are collected, a fingerprint of its author 
becomes apparent. Once gathered, open-source 
intelligence (OSINT) research can begin. Code 
repositories, hacker forums, and other websites 
can be searched for unique data found in the code. 
Analysis of the malware’s C2 structure can identify 
servers and communication methods, which in turn 
may reveal additional clues to the attacker’s identity. 

With this in mind let’s take a look at the details of 
our example malware to see what we have learned in 
Figure 10. 

FIGURE 9: WEB ADDRESS FOUND IN MEMORY MONITOR 

FIGURE 8: IP ADDRESS FOUND IN MEMORY MONITOR 
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In this instance the method of infection for Memory 
Monitor is unknown. It was likely copied onto the 
target system by the attacker since Memory Monitor 
is not known to be viral or use an exploit to infect 
its target. In reviewing the information gathered in 
Figure 10, it is clear that the code was likely written 
by a Russian speaker on a Windows system set to use 
Cyrillic. Analyses of the IP address tracks back to a 
Russian ISP as well, and is described in Figure 11. 

Analysis of the web address “ree4.7ci.ru” leads to 
further information about the malware writer himself, 
reported to be a Russian 17-year-old with ties to cyber 
criminals. Attribution achieved. 

Memory Monitor is related to the malware used in 
the Target stores breach in late 2013. As a fairly well 
known piece of malware, much has been written about 
it and its author making attribution unusually easy. 
It is also a fairly simple piece of code with distinct 
strings and few anti-forensic features. In reality attri-
bution isn’t usually this simple. Many hours of static 
and dynamic analysis may be needed to find useful 
tool marks and puzzle out how the malware functions. 

CONCLUSION

It must be said that it is almost impossible to know 
with 100% certainty who is really behind an attack 
using just malware analysis. Malware code can be 
stolen, accounts hijacked, and tool marks can be 
faked—there is always the possibility of deliberate 
misdirection and misattribution. That said, author 
attribution is possible. By building a careful chain 
of evidence out of tool marks and other malware 
attributes, it is possible to link malware to its source 
within a reasonable amount of certainty. Where pos-
sible, other intelligence gathering methods such as 
signals intelligence (SIGINT) and even human intel-
ligence (HUMINT) can add precision and certainty to 
attribution.

FIGURE 11: IP ADDRESS INFORMATION

TYPE VALUE

MALWARE NAME Memory monitor

SERVICE CREATED svhst.exe

METHOD OF PERSISTENCE Registry Key

REGISTRY KEY DETAIL HKLM\Software\Microsoft\Windows\CurrentVersion\Run\videodrv 

PROJECT PATH x:\Programming\C++ 2011.08\ScanMemory\Debug\mmon.pdb

CREATION DATE 3/23/13 6:18

VERSION 1.3.2.7

LANGUAGE CODE Russian

CHARACTER SET Windows, Cyrillic

WEB ADDRESS ree4.7ci.ru

IP ADDRESS 109.234.159.254

FIGURE 10: COLLECTED TOOL MARK AND C2 INFORMATION
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Strengthening Cyber Incident Response Capabilities 
Through Education and Training in the Incident 
Command System

Austen D. Givens

Introduction 

An oil pipeline running through central Siberia 
exploded one night in October 1982, sending an 
enormous fireball into the sky (National Security 
Archive, 2013). The blast was so powerful that it 
released the energy equivalent to that of a small 
atomic bomb (National Security Archive, 2013). 
The Central Intelligence Agency (CIA), in what may 
be the world’s first-ever example of cyber sabotage, 
made the pipeline explode by introducing flawed 
computer code into the pipeline’s control system, 
causing its components to malfunction (National 
Security Archive, 2013). This attack took advan-
tage of electronic vulnerabilities in the pipeline’s 
Supervisory Control and Data Acquisition (SCADA) 
systems, which regulated the movement of turbines 
in the pipeline that kept oil flowing from one point 
to another (National Security Archive, 2013). The 
CIA was able to exploit these vulnerabilities with the 
flawed computer code, causing the SCADA system 
to malfunction, ultimately resulting in the pipeline 
explosion.

Twenty eight years after the Siberian pipeline 
explosion, the U.S. government again used flawed 
computer code to damage physical infrastructure—
this time, in Iran. In June 2010 Iranian nuclear 
officials discovered that many of the centrifuges 
that they were using to purify uranium had been 
badly damaged (Fildes, 2010). The U.S. and Israeli 
governments, which believed that Iran was using the 
uranium to build nuclear weapons, co-wrote and 
introduced a virus called Stuxnet into the centri-
fuge control systems (Fildes, 2010; Ferran & Radia, 
2013). This highly sophisticated computer virus 
caused the centrifuges deliberately to spin out of 
control, breaking them (Fildes, 2010). The damage 

ABSTRACT

Supervisory Control and Data Acquisition 
(SCADA) systems control innumerable industrial 
processes that affect large segments of U.S. 
critical infrastructure, from regulating the flow 
of water through dams to calibrating the elec-
trical currents in power substations located in 
residential neighborhoods. Historical evidence 
demonstrates that electronic attacks on SCADA 
systems can physically damage them. This can 
trigger consequences that must be simultane-
ously addressed by Computer Security Incident 
Response Teams (CSIRTs) and traditional first 
responders. This article advances a two-part argu-
ment: first, that the Incident Command System 
(ICS) offers a compelling means to strengthen 
cyber incident responses by integrating CSIRTs 
and first responders involved in SCADA incidents 
into a cohesive organizational structure; and sec-
ond, that cybersecurity curricula in academic and 
professional training settings should therefore 
incorporate ICS education in order to increase the 
probability of effective incident responses involv-
ing CSIRTs and first responders in the future.

Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System

 65NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3

Malware Fingerprinting: Analysis of Tool Marks and Other Characteristics of Windows Malware



was so widespread that one expert speculated that 
Stuxnet set back the progress of the Iranian nuclear 
program by two years (Katz, 2010). The Iranian 
government, however, denied that the damage had 
any serious impact on its nuclear ambitions (Warrick, 
2011). Outside analysis by the Royal United Services 
Institute, a London-based defense think tank, con-
firms that Stuxnet’s true long-term impact on the 
Iranian nuclear program was negligible (Barzashka, 
2010, pp. 52–54).

The Siberian pipeline explosion and the Stuxnet 
virus demonstrate that attacks on SCADA systems 
can be used to cause physical damage to infrastruc-
ture. The risk of this type of damage is of increasing 
concern to U.S. federal officials. The Department of 
Homeland Security (DHS) recently ran a worldwide 
exercise to test response coordination to just such an 
incident (DHS, 2014). The need to prepare for physi-
cal infrastructure damage caused by SCADA system 
attacks gives rise to a fundamental question about 
cyber incident response capabilities in the United 
States: how are computer security experts, tasked with 
responding to the virtual effects of cyber attacks, and 
traditional first responders, who attend to the physi-
cal consequences of these incidents, to integrate their 
actions effectively?

This article argues that the Incident Command 
System (ICS), which has for years been used to man-
age conventional disasters, provides a ready-made 
and effective organizational structure for computer 
security experts and traditional first responders to 
integrate their responses to SCADA system attacks. 
Moreover, this article makes the case that since 
ICS can be used to blend the response actions of 
computer security experts and first responders, ICS 
training should be an integral part of cybersecu-
rity curricula, precisely because of the rising need 
for computer experts and first responders to work 
closely with one another.

The rest of the article proceeds as follows. Part two 
briefly introduces ICS and frames the contribution 
of this study within the literature on ICS. Part three 
shows how ICS can effectively integrate cybersecu-
rity experts and first responders into a single incident 
response framework. Part four makes the case that 
educational institutions and professional certifi-
cation organizations should make ICS a central 

component of their cybersecurity curricula. The 
article concludes by synthesizing the key themes pre-
sented in this analysis and offers recommendations 
for future research in this area.

THE INCIDENT COMMAND 
SYSTEM (ICS) — AN OVERVIEW 

ICS is a method, or way, to respond to emergencies. It 
superimposes an organizational coordinating structure 
on the uncertain and ever-changing conditions of an 
incident. Superimposing this management structure on 
the incident response permits one or more organiza-
tions to work together in a more streamlined, effective 
fashion. Moreover, ICS has been used successfully for 
at least 30 years, demonstrating that it is a viable way 
to manage emergency responses of any size or scope. 

After the 9/11 terrorist attacks, ICS became a central 
focus of federal efforts to streamline and enhance 
incident response coordination. This renewed focus 
on ICS was in part a direct reaction to many of 
the coordination failures observed on 9/11, such as 
poor communication and collaboration among local 
government agencies in Manhattan following the col-
lapse of the World Trade Center Twin Towers (9/11 
Commission, 2004, pp. 319–322). Calls for a national 
standard in incident management led to the develop-
ment of the National Incident Management System 
(NIMS) in 2004 (DHS, 2003; 9/11 Commission, 2004, 
p. 397). 

Today NIMS is a national approach to incident man-
agement that covers all jurisdictions and functional 
areas (DHS, 2008). ICS is a central focus of NIMS 
(DHS, 2008b, pp. 45–63). In recent, notable large-scale 
incidents in the United States, public safety officials 
used ICS in response to Hurricane Katrina in 2005 
and the powerful Joplin, Missouri tornado of 2011 
(9/11 Commission, 2004; C-SPAN, 2011; DeAtley, 
2011, pp. 12–13). Government agencies also use ICS 
throughout the United States on more routine, every-
day emergencies, from house fires to hostage standoffs. 
And most recently, in the 2010 draft National 
Cyber Incident Response Plan (NCIRP), the U.S. 
Department of Homeland Security (DHS) identifies 
ICS as the response methodology of choice for manag-
ing significant cyber incidents (DHS, 2010, p. 16).

Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System Strengthening Cyber Incident Response Capabilities Through Education and Training in the Incident Command System

 66 NATIONAL CYBERSECURITY INSTITUTE JOURNAL | VOLUME 2, NO. 3  



Figure 1 below depicts a prototypical ICS organiza-
tional structure. While detailed explanations of the 
specific positions shown in this ICS structure are 
beyond the scope of this article, what is noteworthy—
and applicable directly to the management of SCADA 
incidents—is that ICS incorporates a diversity of 
actors performing distinct and complementary 
functions in the context of an incident response effort. 

The Siberian pipeline explosion and Stuxnet examples 
introduced at the beginning of this article demonstrate 
that cyber incidents can have real-world consequences 
for the operation of critical infrastructure, particularly 
in the realm of SCADA systems. SCADA incidents 
can therefore require a coordinated response effort 
among computer security incident response teams 
(CSIRTs), which are specialized groups of informa-
tion technology (IT) professionals that manage cyber 
incidents, and traditional first responders, like police 
officers, firefighters, and EMTs. This confluence of 
factors suggests that ICS may be a viable method to 
coordinate the actions of CSIRTs and first responders. 
Contemporary research on ICS, as well as government 
reports on cyber incident management, underscores 
that new understandings of how ICS may be used in 
response to SCADA incidents are needed.

CONTEMPORARY SCHOLARSHIP ON 
THE INCIDENT COMMAND SYSTEM

Research on ICS tends to emphasize one of three 
primary themes. First, ICS must be adapted to the 
unique local circumstances in which it is being used, 
taking into consideration factors such as the scope 
of the emergency and the jurisdictions involved in 
the response. Second, despite the strengths of ICS, 
the system also suffers from a number of serious 
deficiencies that may limit its effectiveness under 
certain conditions. And third, analyses of ICS’s orga-
nizational structure show that the system combines 
elements of vertical organizational hierarchies and 
horizontal organizational networks, which may 
prove especially advantageous in responding to 
SCADA incidents. 

Many authors address the customization of ICS to 
the needs of specific government agencies (Lam et 
al., 2010; Bauer, 2009; Esposito, 2011; Yates 1999; 
Ullman, 1998). Other scholars, however, critique 
ICS for its lack of customizability. For example, at 
least one author notes that ICS may be unsuitable 
for response to cyber incidents (Coleman, 2010). 
Still others take issue with ICS’ inability to address 

FIGURE 1: PROTOTYPICAL INCIDENT COMMAND SYSTEM (ICS) STRUCTURE
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higher-level command structures beyond that of the 
incident itself; the very notion that an incident can be 
controlled within any type of framework; the natural 
limits of ICS to adapt quickly to especially demand-
ing incidents, such as nuclear, chemical, or biological 
attacks; ICS’ inability to absorb volunteers; its utility 
being applicable only to para-military types of orga-
nizations; and the need for extensive organizational 
training in order to realize its benefits (e.g. Lutz & 
Lindell, 2008; Cole, 2000; Favero 1999; Yates, 1999). 

A recent notable disaster—the 2010 Deepwater 
Horizon oil rig explosion and spill—highlights the 
complex forces influencing field use of ICS and 
underlines the salience of these observations (Givens, 
2011; Baron, 2010). Descriptions of how ICS blends 
both elements of hierarchies and networks are useful, 
too, because they can enhance understandings of how 
ICS can be leveraged for SCADA incident responses 
(Moynihan, 2007, 2008, 2009, 2009b). 

Government reports on recent exercises to evaluate 
cyber incident responses say nothing about ICS’s 
suitability for emergencies concurrently affecting 
SCADA systems and the physical world. Indeed, 
three full-scale exercise reports from DHS spanning 
2006–2011 do not specifically mention ICS at all 
(DHS, 2011; DHS, 2009; DHS, 2006). These docu-
ments do, however, underscore the continuing need 
for improved communication, coordination, and 
information sharing in response to incidents affect-
ing critical infrastructure in the physical world and 
cyberspace. In particular, they highlight the unique 
challenge of maintaining a baseline of situational 
awareness across all response entities during a 
large-scale emergency (DHS, 2011; DHS, 2009; DHS, 
2006). While greater knowledge of ICS’s field-based 
utility and adaptability is helpful, existing literature 
fails to explain how CSIRTs and first responders 
might effectively integrate their actions within an 
ICS structure during a SCADA incident. 

Unfortunately, there do not appear to be any pub-
lished case studies of how ICS has been used to 
integrate the actions of one or more CSIRTs and tra-
ditional first responders managing a SCADA incident. 
This is understandable, however, because the idea of 
CSIRTs and traditional first responders coordinating a 
shared response to a SCADA incident is still relatively 
new. But to illustrate how this coordination between 
a CSIRT and first responders could work, let us next 
consider a hypothetical example.

INTEGRATING CSIRTS AND 
FIRST RESPONDERS USING THE 
INCIDENT COMMAND SYSTEM  

ICS can be modified easily to integrate CSIRTs and 
first responders into a unified command structure. 
Figure 2 adjusts the prototypical ICS structure and 
shows how this integration occurs. For example, let 
us assume that a computer hacker maliciously 
attacks a SCADA system regulating the flow of water 
out of a dam. This electronic attack, in turn, causes 
the dam to release a torrent of water into a down-
stream community, causing flooding. Under this 
scenario, a linkage exists between this cyber attack 
and its physical effects. A CSIRT will need to 
manage the cyber attack on the SCADA system and 
traditional first responders will need to address 
flooding in this downstream community.  

FIGURE 2:

INCIDENT COMMAND SYSTEM (ICS) 
STRUCTURE — INTEGRATING A COMPUTER 

SECURITY INCIDENT RESPONSE TEAM (CSIRT) 
AND TRADITIONAL FIRST RESPONDERS
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The CSIRT integrates into the ICS structure as a 
branch within the Operations section, visible in the 
bottom right corner of Figure 2. Additionally, a 
CSIRT member joins other members of the Unified 
Command, visible in the top center of Figure 2. 
CSIRT members in the Operations section work on 
the cyber component of this incident by managing the 
hacker’s attack on the SCADA system. They work to 
halt the hacker’s progress and to restore the flow of 
water out of the dam to normal, pre-incident levels. 
Striving to mitigate a future, similar attack, they 
examine software code in concert with a vendor to 
ensure security patches are properly installed. After 
the incident has ended and recovery has begun, they 
conduct a formal after-action analysis to confirm that 
network vulnerabilities have been adequately closed. 

While the CSIRT members address the cyber compo-
nent of this incident, first responders contend with 
the physical effects of the cyber attack. Police officers 
re-direct traffic. Firefighters assist with swift water 
rescue of citizens trapped in their homes. Emergency 
medical personnel attend to the injured. Each of these 
distinct responses — the actions taken by the CSIRT, 
and the actions taken by first responders — forms part 
of a larger, integrated ICS structure. 

ICS is useful for this kind of incident because of 
its scalability. Responses to SCADA system attacks 
incidents can involve fuzzy lines of jurisdiction 
and control, complicating response efforts (DHS, 
2011, pp. 17 – 19; DHS, 2009, pp. 11 – 12; DHS, 2006, 
pp. 6 – 7). Thus a computer server owned by Firm 
A, manufactured by Firm B, cooled by equipment 
from Firm C, connected to a computer network via 
hardware from Firm D, and serviced by contractors 
from Firms E and F, can control a dam under the 
jurisdiction of Town G, which is located upstream 
from Villages H, I, and J. When this server’s failure 
triggers effects in the physical world, it is challeng-
ing to organize and coordinate response agencies and 
organizations. Yet when necessary, ICS rapidly scales 
geographically, and it can efficiently incorporate these 
different actors into a unified response effort. 

ICS is also helpful in this hypothetical incident 
because it can successfully integrate the actions of 
teams performing very different functions. CSIRT 

team members and traditional first responders like 
police officers, firefighters, and emergency medical 
personnel have divergent professional responsibilities. 
Since ICS can incorporate diverse groups of respond-
ers, including CSIRT team members and traditional 
first responders, it can be used to bring the efforts of 
these different functional groups together within a 
focused response coordination structure.

ICS offers a viable way forward for CSIRTs and first 
responders to synchronize their response efforts dur-
ing a SCADA system attack. ICS can easily expand 
to group CSIRTs and first responders into a uni-
fied organizational structure. The system is able to 
accommodate teams of professionals from numerous 
organizations and jurisdictions, even when they are 
spread across a wide geographical area. And ICS 
permits professionals performing radically different 
jobs to work together toward common objectives. On 
its face, ICS appears to offer an effective method for 
CSIRTs and first responders to collaborate during 
SCADA system incidents. 

Having made the case that ICS offers a potential 
solution for CSIRTs and first responders to integrate 
better their responses to SCADA system incidents, 
the next section argues that ICS training should be 
an essential component of professional education for 
cybersecurity professionals.

BRIDGING THE GAP: 
INCORPORATING ICS TRAINING INTO 
CYBERSECURITY CURRICULA

While numerous cybersecurity professional certifica-
tions exist, none appear to offer training in ICS. This 
is puzzling, since DHS has signaled clearly that ICS 
is the preferred response method for cyber incidents 
of any size or scope. Moreover, even certifications for 
those personnel specifically handling cyber incident 
responses do not appear to include ICS as part of 
their curricula. Table 1 lists four of the most popular 
IT security certifications and shows that these certifi-
cations do not include training in ICS.
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The GIAC Certified Incident Handler credential is 
prestigious, in that it comes from the SANS Institute, 
one of the most widely recognized and peer-respected 
cybersecurity organizations (Symantec, 2012). The 
qualifications for this certification require cybersecu-
rity professionals to show knowledge and proficiency 
in multiple functional areas, including the “steps of 
the incident handling process” and “common attack 
techniques that compromise hosts” (SANS Institute, 
2014). These types of functional knowledge are to 
be expected, since they are indispensable for success-
ful cyber incident management. However, the SANS 
Institute website detailing the requirements for this 
credential do not identify knowledge of ICS as a key 
requirement for the certification.

The CISSP is arguably the most recognizable creden-
tial among cybersecurity professionals (Nemeth et 
al., 2010, p. 945). The process to earn the CISSP is 
long and rigorous. In addition to passing an exam, 
prospective CISSP candidates must obtain at least five 
years of direct, full-time work experience in 2 of 10 
knowledge domains (ISC 2, 2014b). These knowledge 
domains are: access control; telecommunications and 
network security; information security governance 
and risk management; software development secu-
rity; cryptography; security architecture and design; 
operations security; business continuity and disaster 
recovery planning; legal, regulations, investigations, 

and compliance; and physical (environmental) security 
(ISC 2, 2014b). Of these 10 knowledge domains, the 
business continuity and disaster recovery domain is 
most directly applicable to ICS since ICS itself  was 
born out of the need to respond more effectively to 
traditional disasters, such as fires and earthquakes. 
Nevertheless, the ISC 2 website does not mention train-
ing in ICS at all.

CompTIA’s Security + credential is not viewed uni-
versally to be among the strongest security credentials 
for IT professionals (Anderson, 2010). The credential 
is still popular, however, due in part to its reasonable 
cost (Anderson, 2010). The Security + certification 
covers several fundamental areas of cybersecurity, 
including access control, identity management, 
cryptography, incident mitigation, and deterrent 
techniques (CompTIA, 2014). However, there is no 
indication on the CompTIA website that ICS train-
ing is part of the Security + curriculum. CompTIA 
also does not appear to offer other certifications that 
would be more relevant or useful for cyber incident 
management purposes.

EC-Council’s Certified Incident Handler credential 
uses a classroom and lab-based learning model over 
a two-day period (EC-Council, 2014). The organiza-
tion’s website includes a detailed agenda for the two 
day training period, and this agenda lists a significant 

CERTIFYING 
BODY

CERTIFICATION
RELEVANT BASIC TRAINING 

REQUIREMENTS

EVIDENCE OF 
ICS TRAINING? 

(YES/NO)

INFORMATION 
SOURCE(S)

SANS 
Institute

GIAC Certified Incident 
Handler

Incident Handling Overview, Identification, 
and Containment

No SANS Institute, 2014

ISC
Certified Information 

Systems Security 
Professional (CISSP)

Domain experience in 2 of 10 functional 
areas, including business continuity/

disaster recovery
No

ISC 2, 2014; 
ISC 2, 2014b

CompTIA Security +
Access control, identity management, 

cryptography, mitigation/deterrent techniques
No CompTIA, 2014

EC-Council Certified Incident Handler
Incident Response, Incident Handling, 

Incident Categories
No EC-Council, ND

TABLE 1:

IT SECURITY PROFESSIONAL CERTIFICATIONS AND REQUIREMENTS
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amount of instruction about how to form CSIRTs, 
incident response methods, and how to identify and 
categorize incidents that occur (EC-Council, n.d., pp. 
3–6). But nowhere in this detailed training agenda 
does EC-Council mention ICS, its applicability to 
cyber incidents, or the ways in which ICS can integrate 
the efforts of CSIRTs and traditional first responders. 

Four of the top cybersecurity professional certifica-
tions do not appear to identify or address explicitly the 
need for cybersecurity professionals to be proficient in 
ICS. One might expect colleges and universities, which 
recently have seen a great surge in growth of cyberse-
curity degree programs, to fill this gap in knowledge by 
including ICS instruction in their undergraduate and 
graduate-level curricula. It appears, however, that at 
least among the top five cybersecurity degree programs 
in the country, none have incorporated ICS training 
into their course syllabi.

A 2014 study by the Ponemon Institute, an indepen-
dent Michigan-based research center focusing on IT 
security issues, ranked the top collegiate cybersecurity 
programs in the nation (Ponemon Institute, 2014). The 
data to construct the rankings came from a survey 
of IT security practitioners (Ponemon Institute, 
2014, pp. 1–2). The top five schools in the rankings, 
in descending order, were: the University of Texas 
at San Antonio, Norwich University, Mississippi 
State University, Syracuse University, and Carnegie 
Mellon University (Ponemon Institute, 2014, p. 1). 
A web-based survey of these institutions’ cybersecu-
rity curricula suggests that ICS training is not being 
included in higher education curricula for cybersecu-
rity. Table 2 lists the top five schools in the Ponemon 
Institute rankings, identifies classes within their cur-
ricula that relate to incident responses, and identifies 
those institutions that explicitly include ICS as part of 
their coursework.

INSTITUTION
RELEVANT DEGREE 

PROGRAM(S) 
OFFERED

COURSE(S) RELATED TO CYBER 
INCIDENT MANAGEMENT

EVIDENCE OF 
ICS TRAINING 

BEING 
OFFERED? 
(YES/NO)

SOURCE(S)

UNIVERSITY OF 
TEXAS AT 

SAN ANTONIO

BBA Cybersecurity, MS 
Information Assurance, 
BS and MS in Computer 

Science with security 
concentration

Principles of Computer Information Security, 
Introduction to Digital Forensics, Intrusion 

Detection and Incident Response
No

UTSA, n.d.; 
UTSA, n.d.-b; 
UTSA, n.d.-c; 
UTSA, n.d.-d; 
UTSA, n.d.-e

NORWICH 
UNIVERSITY

Computer Security and 
Information Assurance 
undergraduate major 

and minor

Information Assurance I and II No

Norwich University 
2014; 

Norwich University 
2014b

MISSISSIPPI 
STATE 

UNIVERSITY

BS Computer Science, 
BS Software Engineering, 

MS Computer Science

Business Information 
Systems Security Management

No
MSU, 2014; 
MSU, 2014b; 
MSU, 2013

SYRACUSE 
UNIVERSITY

MS Cybersecurity, 
Certificate of Advanced 
Study in Information 

Security Management

Computer Security, Internet Security No
SU, 2015; 
SU, 2015b

CARNEGIE 
MELLON 

UNIVERSITY
MS Information Security

Network Forensics, Cyber Forensics and 
Incident Response Capstone

No
CMU, 2014; 
CMU, 2014b

TABLE 2:

TOP 5 ACADEMIC CYBERSECURITY PROGRAMS AND ICS TRAINING *

* AS CALCULATED IN PONEMON, 2014.
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The University of Texas at San Antonio houses 
the top-ranked cybersecurity degree programs in 
the United States (Ponemon Institute, 2014, p.1). 
These programs include a Bachelor of Business 
Administration degree in Cybersecurity, as well as a 
Master of Science degree in Information Assurance 
(UTSA, n.d.-b; UTSA, n.d.-c). UT San Antonio 
features several courses that pertain to cyber inci-
dent management, as well. These courses include 
Introduction to Digital Forensics, which teaches stu-
dents how to analyze systematically the aftermath of 
a cyber incident, as well as Intrusion Detection and 
Incident Response, which deals precisely with the 
topic of responding to cyber incidents (UTSA, n.d.-
e). Among the descriptions of these degree programs 
and courses, however, there is no mention of ICS. 
Norwich University, Mississippi State University, 
Syracuse University, and Carnegie Mellon University 
round out the top five cybersecurity academic 
programs in the United States. None of these institu-
tions appears to offer any instruction in ICS for 
cybersecurity students, either. 

There are several possible explanations for the absence 
of ICS instruction in these top cybersecurity degree 
programs. The simplest and most plausible explana-
tion is that these institutions do train students in ICS 
within their courses, but they do not make that fact 
publically known on their websites. It is also possible 
that universities are reacting to changing marketplace 
demands in cybersecurity, and this reacting creates a 
lag effect between the emergence of a market-driven 
need for training in ICS and universities ultimately 
incorporating ICS training into their curricula. This 
explanation seems less probable, though. The NCIRP, 
which specifically identified ICS as the response 
method of choice, was published in 2010—four years 
before this writing, and a reasonable amount of time 
for universities to adopt and incorporate ICS training 
into their courses. A third possible explanation is that 
training in ICS is seen as too “practitioner-driven” for 
a university setting and somehow lacking in academic 
rigor or legitimacy. Yet this explanation rings hollow, 
as Norwich University and Syracuse University are 
known for being “military-friendly” institutions with 
many students that come from practitioner-oriented 
backgrounds in the U.S. armed services (Jevis, 2014; 
Norwich, 2014).

It is clear that the top cybersecurity professional 
certifications and cybersecurity academic programs in 
the United States either do not include ICS training as 
part of their course curricula; or, at a minimum, these 
certifications and degree programs do not place great 
emphasis on the fact that this ICS training is included 
in their courses. Given the need for CSIRTs and first 
responders to synchronize their responses to SCADA 
incidents, this gap in ICS training should be corrected 
by the certifying bodies and universities themselves. 
To support these certifying bodies and universities in 
their efforts, however, DHS and the Department of 
Defense (DOD) can offer three forms of low- or no-
cost assistance.

DHS and DOD can help to push knowledge of ICS 
to cybersecurity certification groups and universities 
through incentives, web-based resources, and hands-
on training. If  it costs certification organizations 
money to make changes to their curricula, then they 
must have a compelling reason to make these modi-
fications. DHS and DOD can offer one-time cash 
awards, in the form of grants or prizes, to groups like 
ISC 2 and institutions of higher education to make 
these changes quickly. This “free money” would go a 
long way toward overcoming organizational inertia 
to making curricular modifications, and would not 
act as a long-term financial burden on the federal 
government, because the awards themselves would 
be one-time-only cash allocations. DHS and DOD 
can also make available web-based resources for ICS 
training. DHS already makes available online ICS 
resources for first responders and others in the emer-
gency management community (DHS, ND). Tailoring 
this information slightly to a cybersecurity-oriented 
audience could be helpful in encouraging CSIRTs 
to adopt ICS. Lastly, DHS and DOD could offer 
occasional hands-on training in ICS for CSIRTs. To 
encourage attendance, these agencies would have to 
offer the training so that it is convenient for CSIRTs to 
attend, and at little or no cost. DHS already conducts 
these hands-on ICS trainings, often through state-level 
emergency management agencies, for first responders 
and emergency managers (VDEM, 2012). Adapting 
the existing hands-on ICS training for CSIRTs could 
also go a significant way toward encouraging CSIRTs 
to adopt ICS.
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CONCLUSIONS

This article argued that CSIRTs should use ICS during 
SCADA incidents, because doing so makes it easier to 
integrate CSIRT actions with those of traditional first 
responders. Although this arrangement may present 
select communication and coordination challenges 
for CSIRTs and first responders, on balance ICS will 
help CSIRTs and first responders to manage SCADA 
incidents more effectively. To facilitate the use of ICS 
by CSIRTs, the nation’s top professional cybersecurity 
certification groups and universities offering cyber-
security degrees should make ICS an explicit part of 
their curricula.

There is a compelling need for additional research in 
this area, because little is known about the process by 
which the field-based findings of homeland security 
and cybersecurity practitioners eventually integrate 
into educational and training programs. In particular, 
the absence of case studies about how lessons learned 
from specific incident responses feed into educational 
programs in homeland security and cybersecurity is 
problematic. Scholars and practitioners can ben-
efit from deeper investigations of how these lessons 
learned in real world incidents can be integrated better 
into formal educational settings.

The cybersecurity and emergency management com-
munities can also benefit from greater knowledge 
exchange. It has been said that ICS can be a way of 
thinking about incident management, as well as a 
way of coordinating response to an incident. In other 
words, ICS is not merely a management tool for 
dealing with an incident; ICS also conveys a cultural 
approach to incident management that emphasizes 
principles like flexibility, adaptability, and creativity. 
How can CSIRTs learn to “do” ICS, and also embrace 
these principles in their own cultural approach to 
incident management?

One possible first step is for CSIRT members in 
government agencies and the private sector to 
take independent study courses online through the 
Federal Emergency Management Agency’s (FEMA) 
Emergency Management Institute as part of their 
normal training activities. These emergency manage-
ment courses, which are available for free, can provide 
CSIRT members with introductory knowledge of 
the principles found in NIMS, the NRF, and ICS 
(FEMA, 2012). In completing these courses, CSIRT 

members can develop more sophisticated and nuanced 
understandings of how ICS can be beneficial for 
them. CSIRT members can also gain helpful insights 
into how first responders use ICS during incidents. 
Important principles of emergency management like 
flexibility and resiliency can become more inculcated 
in a CSIRT’s culture as a result of this training. And 
this training, in turn, can help CSIRTs to better inte-
grate their operations with traditional first responders, 
and to achieve better results in managing incidents.

As SCADA incidents become increasingly common, 
there will be a pressing need for CSIRTs and tradi-
tional first responders to coordinate their response 
actions. ICS, a proven method for managing incidents 
of any size, scope, or cause, can help CSIRTs and 
first responders to better integrate their efforts and 
strengthen homeland security as a result. It is now 
essential that cybersecurity training and education 
programs embrace ICS to prepare their students for 
joint responses with homeland security practitioners.
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